Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 340: 139670, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37541440

ABSTRACT

Inhalation of particulate matter (PM) present in indoor atmospheres has been associated with poor health and wellbeing of occupants. Here we report the characteristics of airborne PM collected from twenty-two air-conditioned childcare centres in Singapore. Airborne PM were collected using cascade impactors and characterized for morphology, elemental composition, endotoxin levels, ability to generate abiotic reactive oxygen species, and oxidative stress-dependent cytotoxicity in BEAS-2B cell lines. The mass concentrations of ultrafine particles (PM0.06-1) were more abundant than that of larger particles (PM1-4, PM4-20, and PM20-35 particles). PM20-35 and PM4-20 were irregularly shaped particles, PM1-4 particles had membranous flaky structures and PM0.06-1 particles were pseudo-spherical with the occasional presence of crystalline structures. Carbonaceous matter dominated PM20-35 particles, and the abundance of inorganic salts, iron and sulfur increased with decreasing PM size. Measured endotoxin levels were especially higher in PM4-20 particles. Compared to other particle size fractions, PM0.06-1 particles generated the highest ROS and were also the most potent in generating intracellular ROS in BEAS-2B cell lines. However, total mass concentrations, elemental compositions, abiotic responses, and PM collected from centres with split air-conditioning systems and no active outdoor air supply (SAC) were not statistically different compared with PM collected from centres with air conditioning with mechanical ventilation (ACMV). In conclusion, our study showed obvious distinctions in mass concentrations, morphology, elemental compositions, and cytotoxic potential of different sized particles collected from childcare centres, where the smallest particles (PM0.06-1) exhibited higher hazard potential.


Subject(s)
Air Pollutants , Particulate Matter , Humans , Child , Particulate Matter/toxicity , Reactive Oxygen Species , Child Care , Particle Size , Endotoxins , Air Pollutants/toxicity , Air Pollutants/chemistry , Environmental Monitoring
2.
Chemosphere ; 224: 85-92, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30818198

ABSTRACT

Infants and children under 6 years old spend most of daily time in Child Care Centers (CCCs), especially in the tropical regions like Singapore. Environmental exposure and associated risk during this early critical developmental stage is of great public concern. In this study, seven representative volatile organic compounds (VOCs) and five typical phthalates were analyzed in the indoor and outdoor air samples collected from 32 Singapore CCCs. The median of total VOC and phthalate concentration in indoor air was 19.03 and 5.41 µg m-3; respectively. For both indoors and outdoors environment, benzene, toluene and xylene were the dominant VOC contributors (more than 68%). For indoor air phthalates, di(2-ethylhexyl) phthalate and di-butyl phthalate (DBP) accounts for 60-76%. The level of both VOCs and phthalates in indoor environment was significantly higher than that in outdoor, with an average indoor/outdoor ratio of 1.24 and 1.45; respectively. A strong correlation (r > 0.50, p < 0.05) was observed between indoor and outdoor air compounds. VOC and phthalate levels have no significant difference between CCCs with split-unit and centrally ventilated air conditioners. Monte Carlo simulation was used to estimate exposure uncertainty and variability for the risk assessment. Overall, the concentrations of VOC were below the healthy reference values from either EPA Integrated Risk Information System (IRIS) or Singapore guideline. However, similar to other countries' report, benzene, DBP, ethylbenzene and naphthalene were at levels that could exceed the stringent standards such as Office of Environmental Health Hazard Assessment (OEHHA) cancer and reproductive health-based benchmarks.


Subject(s)
Air Pollutants , Child Day Care Centers , Phthalic Acids , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Benzene/analysis , Benzene Derivatives/analysis , Child, Preschool , Environmental Exposure/analysis , Humans , Infant , Risk Assessment , Singapore , Toluene , Volatile Organic Compounds/analysis , Xylenes/analysis
3.
J Toxicol Environ Health A ; 78(21-22): 1369-83, 2015.
Article in English | MEDLINE | ID: mdl-26580450

ABSTRACT

Fruit harvesters' primary pesticide exposure results from direct dermal and clothing contact with foliar residues. The transfer of pesticide residues from foliage to strawberry harvesters' hands and their subsequent dissipation under normal occupational conditions in the field was examined. The effectiveness of latex gloves as sampling dosimeters was evaluated and compared with bare-handed harvester exposures. After application of malathion and fenpropathrin insecticides on strawberry fields, resulting harvester exposures using four independent methods were studied. Between d 4 (preharvest interval, PHI) and d 7 after pesticide application, (1) dislodgeable foliar residues, (2) pesticide residues accumulating on the gloves, and (3) end-of-shift harvester hand-wash residues decreased by 90, 75, and 85%, respectively. In contrast, the 7-d decline in excreted urine metabolites was only 43% for gloved harvesters and 29% for barehanded ones. In addition, gloved harvesters displayed 23% lower biomonitored exposures than barehanded ones, demonstrating that latex gloves are an effective protective barrier against surface residues. Since malathion and its metabolites are readily excreted, data indicated that there were likely other sources of excreted malathion breakdown products present on foliar surfaces after dissipation of malathion itself.


Subject(s)
Agriculture , Environmental Pollutants/analysis , Hand , Occupational Exposure/analysis , Pesticide Residues , Pesticides/analysis , Environment , Gloves, Protective , Humans , Risk Assessment
4.
J Toxicol Environ Health A ; 78(17): 1094-104, 2015.
Article in English | MEDLINE | ID: mdl-26302432

ABSTRACT

Pesticide exposure during harvesting of crops occurs primarily to the workers' hands. When harvesters wear latex rubber gloves for personal safety and hygiene harvesting reasons, gloves accumulate pesticide residues. Hence, characterization of the gloves' properties may be useful for pesticide exposure assessments. Controlled field studies were conducted using latex rubber gloves to define the factors that influence the transfer of pesticides to the glove and that would affect their use as a residue monitoring device. A novel sampling device called the Brinkman Contact Transfer Unit (BCTU) was constructed to study the glove characteristics and residue transfer and accumulation under controlled conditions on turf. The effectiveness of latex rubber gloves as sampling dosimeters was evaluated by measuring the transferable pesticide residues as a function of time. The validation of latex rubber gloves as a residue sampling dosimeter was performed by comparing pesticide transfer and dissipation from the gloves, with the turf transferable residues sampled using the validated California (CA) Roller, a standard measure of residue transfer. The observed correlation (Pearson's correlation coefficient R(2)) between the two methods was .84 for malathion and .96 for fenpropathrin, indicating that the BCTU is a useful, reliable surrogate tool for studying available residue transfer to latex rubber gloves under experimental conditions. Perhaps more importantly, these data demonstrate that latex gloves worn by workers may be useful quantifiable matrices for measuring pesticide exposure.


Subject(s)
Gloves, Protective , Occupational Exposure/analysis , Pesticide Residues/analysis , Rubber/chemistry , Malathion/analysis , Pyrethrins/analysis
5.
Bull Environ Contam Toxicol ; 86(6): 615-20, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21503692

ABSTRACT

We investigated the accumulation of pesticide residues on rubber latex gloves that are used by strawberry harvesters to protect their skin, reduce pesticide exposure and promote food safety. Gloves accumulated residues of 16 active ingredients including azoxystrobin, bifenthrin, boscalid, captan, cyprodinil, fenhexamid, fenpropathrin, fludioxonil, hexythiazox, malathion, methomyl, naled, propiconazole, pyraclostrobin, quinoline, and quinoxyfen at different times. Glove residue accumulation (t(½) 2.8-3.7 d) was very similar to the dissipation of DFRs (t(½) 2.1-3.0 d) during the first 3 weeks after malathion applications. Dermal malathion dose was 0.2 mg/kg at the preharvest interval and declined to trace levels during the following 3 months. Glove accumulation of malathion indicated trace surface residue availability and was used to assess the relationship between dislodgable foliar residues and potential hand exposure.


Subject(s)
Environmental Pollutants/analysis , Gloves, Protective , Occupational Exposure/analysis , Pesticide Residues/analysis , Agriculture/statistics & numerical data , Fragaria , Fungicides, Industrial/analysis , Humans , Insecticides/analysis , Occupational Exposure/statistics & numerical data , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...