Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 73(14): 4247-55, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23687339

ABSTRACT

Germline mutations of the retinoblastoma gene (RB1) predispose to both sporadic and radiation-induced osteosarcoma, tumors characterized by high levels of genomic instability, and activation of alternative lengthening of telomeres. Mice with haploinsufficiency of the Rb1 gene in the osteoblastic lineage reiterate the radiation susceptibility to osteosarcoma seen in patients with germline RB1 mutations. We show that the susceptibility is accompanied by an increase in genomic instability, resulting from Rb1-dependent telomere erosion. Radiation exposure did not accelerate the rate of telomere loss but amplified the genomic instability resulting from the dysfunctional telomeres. These findings suggest that telomere maintenance is a noncanonical caretaker function of the retinoblastoma protein, such that its deficiency in cancer may potentiate DNA damage-induced carcinogenesis by promoting formation of chromosomal aberrations, rather than simply by affecting cell-cycle control.


Subject(s)
Genes, Retinoblastoma , Genomic Instability/radiation effects , Retinoblastoma Protein/genetics , Telomere/metabolism , Animals , Bone Neoplasms/genetics , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cells, Cultured , Genetic Predisposition to Disease , Haploinsufficiency , Mice , Osteosarcoma/genetics , Radiation , Telomere/genetics
2.
Curr Genomics ; 13(6): 433-7, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23450216

ABSTRACT

Secondary bone tumours arising in the field of a preceding radiotherapy are a serious late effect, in particular considering the increasing survival times in patients treated for paediatric malignancies. In general, therapy associated tumours are known to show a more aggressive behaviour and a limited response to chemotherapy compared with their primary counterparts. It is not clear however whether this less favourable outcome is caused by inherent genetic factors of the tumour cells or by a general systemic condition of the patient. To elucidate this we analysed a series of bone sarcomas with a history of prior irradiation for the presence of genomic alterations and compared them with the alterations identified earlier in primary osteosarcomas. We analysed seven radiation induced bone sarcomas for genome-wide losses of heterozygosity (LOH) using Affymetrix 10K2 high-density single nucleotide polymorphism (SNP) arrays. Additionally, copy number changes were analysed at two distinct loci on 10q that were recently found to be of major prognostic significance in primary osteosarcomas. All the investigated tumours showed a LOH at 10q21.1 with 86% of cases (6/7) revealing a total genome-wide LOH score above 2400 and more than 24% of the genome being affected. Our results indicate similar genetic alterations in radiation induced sarcomas of bone and primary osteosarcomas with a poor prognosis. We speculate that the high degree of genomic instability found in these tumours causes the poor prognosis irrespective of the initiating event.

3.
Radiat Environ Biophys ; 50(1): 135-41, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21063720

ABSTRACT

Osteosarcoma is the most frequent secondary malignancy following radiotherapy of patients with bilateral retinoblastoma. This suggests that the Rb1 tumour suppressor gene might confer genetic susceptibility towards radiation-induced osteosarcoma. To define the contribution of the Rb1 pathway in the multistep process of radiation carcinogenesis, we evaluated somatic allelic changes affecting the Rb1 gene itself as well as its upstream regulator p16 in murine osteosarcoma induced by (227)Th incorporation. To distinguish between the contribution of germline predisposition and the effect of a 2-hit allelic loss, two mouse models harbouring heterozygote germline Rb1 and p16 defects were tested for the incidence and latency of osteosarcoma following irradiation. We could show that all tumours arising in BALB/c×CBA/CA hybrid mice (wild-type for Rb1 and for p16) carried a somatic allelic loss of either the Rb1 gene (76.5%) or the p16 gene (59%). In none of the tumours, we found concordant retention of heterozygosity at both loci. Heterozygote knock-out mice for Rb1 exhibit a significant increase in the incidence of osteosarcoma following (227)Th incorporation (11/24 [corrected] in Rb1+/- vs. 2/18 in Rb1+/+, p=4×10(-5)), without affecting tumour latency. In contrast, heterozygote knock-out mice for p16 had no significant change in tumour incidence, but a pronounced reduction of latency (LT(50%) =355 days in p16+/- vs. 445 days in p16+/+, p=8×10(-3)). These data suggest that Rb1 germline defects influence early steps of radiation osteosarcomagenesis, whereas alterations in p16 mainly affect later stages of tumour promotion and growth.


Subject(s)
Alpha Particles/adverse effects , Bone Neoplasms/genetics , Neoplasms, Radiation-Induced/genetics , Osteosarcoma/genetics , Retinoblastoma Protein/genetics , Signal Transduction/genetics , Signal Transduction/radiation effects , Allelic Imbalance/radiation effects , Animals , Bone Neoplasms/etiology , Bone Neoplasms/metabolism , Bone and Bones/radiation effects , Female , Genes, p16 , Genetic Predisposition to Disease , Germ-Line Mutation/radiation effects , Mice , Osteosarcoma/etiology , Osteosarcoma/metabolism , Retinoblastoma Protein/metabolism , Thorium/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...