Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 251: 119472, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33493936

ABSTRACT

Kaolinite-rich Cretaceous clay sediment samples from Burgos (Spain) have been analyzed by elemental analysis, X-ray fluorescence, inductively coupled plasma mass spectrometry, X-ray diffraction and different spectroscopic techniques, as Fourier Transform Infrared, ultraviolet-visible and electron paramagnetic resonance. The clay sediment samples mainly contain quartz, muscovite and kaolinite. Different radicals, as A- and B-Centers in kaolinite and organic paramagnetic species, are detected. An illite/kaolinite FTIR band ratio parameter (IKB) is proposed to infer the illite/kaolinite proportion, which can be useful to graphically visualize the iron-substituted Al(III) sites. Studies of the activity as scavengers of DPPH and ABTS radicals show that samples with a larger amount of orthorhombic Fe(III) ions replacing Al(III) ions exhibit a higher antioxidant capacity.

2.
Talanta ; 202: 443-451, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31171206

ABSTRACT

The maintenance of the cold chain is essential to ensure foodstuff conformity and safety. However, gaps in the cold chain may be expected so designing analytical methods capable to detect cold chain breaks is a worthwhile issue. In this paper, the possibility of using the amount of nine biogenic amines (BAs) determined in Thunnus albacares by HPLC-FLD for detecting cold chain breaks is approached. Tuna is stored at 3 different temperature conditions for 8 storage periods. The evolution of the content of BAs is analyzed through parallel factor analysis (PARAFAC), in such a way that storage temperature, BAs and storage time profiles are estimated. PARAFAC has made it possible to observe two spoilage routes with different relative evolution of BAs. In addition, it has enabled to estimate the storage time, by considering the three storage temperatures, with errors of 0.5 and 1.0 days in fitting and in prediction, respectively. Furthermore, a class-modelling technique based on partial least squares is sequentially applied to decide, from the amount of BAs, if there has been a cold chain break. Firstly, samples stored at 25 °C are statistically discriminated from those kept at 4 °C and -18 °C; next, frozen samples are distinguished from those refrigerated. In the first case, the probabilities of false non-compliance and false compliance are almost zero, whereas in the second one, both probabilities are 10%. Globally, the results of this work have pointed out the feasibility of using the amount of BAs together with PLS-CM to decide if the cold chain has been maintained or not.


Subject(s)
Biogenic Amines/analysis , Food Storage , Least-Squares Analysis , Animals , Cold Temperature , Tuna
3.
Anal Bioanal Chem ; 382(2): 320-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15782337

ABSTRACT

A set of laboratory practices is proposed in which evaluation of the quality of the analytical measurements is incorporated explicitly by applying systematically suitable methodology for extracting the useful information contained in chemical data. Non-parametric and robust techniques useful for detecting outliers have been used to evaluate different figures of merit in the validation and optimization of analytical methods. In particular, they are used for determination of the capability of detection according to ISO 11843 and IUPAC and for determination of linear range, for assessment of the response surface fitted using an experimental design to optimize an instrumental technique, and for analysis of a proficiency test carried out by different groups of students. The tools used are robust regression, least median of squares (LMS) regression, and some robust estimators as median absolute deviation (m.a.d.) or Huber estimator, which are very useful as an alternatives to the usual centralization and dispersion estimators.

4.
Talanta ; 65(1): 246-54, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-18969791

ABSTRACT

Multicriteria optimization, widely used in engineering, does not much used in the optimization of analytical signals. The aim of this paper is to show the usefulness of the desirability function to optimize instrumental responses obtained in instrumental analysis. The simultaneous optimization of a signal and of its variability is a generic question of interest to any chemical analyst. It is clear that the improvement of the two responses forms the basis of the validation of any analytical method, and affects all the figures of merit: accuracy (trueness and precision), capability of detection, robustness, sensitivity, etc. Furthermore, in the specific case of electroanalysis, an improvement in the signal may implicitly mean an increase of the signal in the blank, such that the "net signal" may not improve. This experimental approach (surface response methodology plus desirability) to multicriteria optimization has been applied to three cases of growing complexity. Thus, in the determination of Cu(II) by differential pulse anodic stripping voltammetry the simultaneous maximization of the peak current and minimization of its standard deviation is looked for. Whereas, in the determinations of Ni(II) and indomethacin by differential pulse adsorptive stripping voltammetry, the simultaneous maximization of the peak current and minimization of the blank signal is desired. In all the cases, the experimental conditions where the optima are found for each individual response are just opposite, so it is required to look for a certain compromise, that is achieved using the desirability function.

SELECTION OF CITATIONS
SEARCH DETAIL
...