Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(14)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35889575

ABSTRACT

The origin of fluorescence in carbon dots (C-dots) is still a puzzling phenomenon. The emission is, in most of the cases, due to molecular fluorophores formed in situ during the synthesis. The carbonization during C-dots processing does not allow, however, a fine control of the properties and makes finding the source of the fluorescence a challenging task. In this work, we present a strategy to embed a pre-formed fluorescent molecule, safranin O dye, into an amorphous carbonaceous dot obtained by citric acid carbonization. The dye is introduced in the melted solution of citric acid and after pyrolysis remains incorporated in a carbonaceous matrix to form red-emitting C-dots that are strongly resistant to photobleaching. Embedding dyes in amorphous C-dots represents an alternative method to optimize the emission in the whole visible spectrum.

2.
Front Plant Sci ; 13: 898740, 2022.
Article in English | MEDLINE | ID: mdl-35865281

ABSTRACT

The knowledge of the organization of the domesticated gene pool of crop species is an essential requirement to understand crop evolution, to rationalize conservation programs, and to support practical decisions in plant breeding. Here, we integrate simple sequence repeat (SSR) analysis and phenotypic characterization to investigate a globe artichoke collection that comprises most of the varieties cultivated worldwide. We show that the cultivated gene pool of globe artichoke includes five distinct genetic groups associated with the major phenotypic typologies: Catanesi (which based on our analysis corresponds to Violetti di Provenza), Spinosi, Violetti di Toscana, Romaneschi, and Macau. We observed that 17 and 11% of the molecular and phenotypic variance, respectively, is between these groups, while within groups, strong linkage disequilibrium and heterozygote excess are evident. The divergence between groups for quantitative traits correlates with the average broad-sense heritability within the groups. The phenotypic divergence between groups for both qualitative and quantitative traits is strongly and positively correlated with SSR divergence (FST) between groups. All this implies a low population size and strong bottleneck effects, and indicates a long history of clonal propagation and selection during the evolution of the domesticated gene pool of globe artichoke. Moreover, the comparison between molecular and phenotypic population structures suggests that harvest time, plant architecture (i.e., plant height, stem length), leaf spininess, head morphology (i.e., head shape, bract shape, spininess) together with the number of heads per plant were the main targets of selection during the evolution of the cultivated germplasm. We emphasize our findings in light of the potential exploitation of this collection for association mapping studies.

3.
Front Chem ; 6: 585, 2018.
Article in English | MEDLINE | ID: mdl-30533412

ABSTRACT

Novel polypseudorotaxanes (PPR) based on poly(N-isopropylacrylamide) (PNIPAAm) and acrylamide-γ-cyclodextrin (AγCD) are successfully synthesized. AγCD gives rise to sliding crosslinking systems and influences the thermoresponsive and swelling behavior of PNIPAAm hydrogels. Namely, their lower critical solution temperature (LCST) can be tuned up to 38°C, thus making the resulting materials of great interest in biomedical applications. Also, AγCD influences the thermal and mechanical properties of hydrogels, by affecting the T g and E modulus values.

4.
Carbohydr Polym ; 150: 166-71, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27312626

ABSTRACT

For the first time, the synthesis of polymeric hydrogels containing cyclodextrins (CDs) obtained by frontal polymerization (FP) is reported. In particular, the effects of CDs on poly(2-hydroxyethylacrylate) hydrogel properties are investigated. In a first series of materials, ß-cyclodextrin is dispersed into the polymer matrix, while in the second one acryloyl-ß-cyclodextrin is grafted to poly(2-hydroxyethylacrylate) chains. FP parameters (front velocity and maximum temperature), swelling properties, glass transition temperatures and mechanical properties of the hydrogels are studied. Results show that both types of cyclodextrin influence the above properties, and the major effects are found for concentration higher than 1mol% of acryloyl-ß-cyclodextrin. Namely, a significant increase of glass transition temperature and of compression moduli are found. Finally, this study demonstrates that FP is a convenient technique to obtain CD-containing hydrogels, in which the type and amount of cyclodextrin can be suitably modulated to tune polymer properties, in function of the desired hydrogel applications.


Subject(s)
Hydrogels/chemistry , Polyhydroxyethyl Methacrylate/analogs & derivatives , Polymerization , beta-Cyclodextrins/chemistry , Chemistry Techniques, Synthetic , Mechanical Phenomena , Phase Transition , Polyhydroxyethyl Methacrylate/chemical synthesis , Polyhydroxyethyl Methacrylate/chemistry , Solubility
5.
ACS Appl Mater Interfaces ; 7(6): 3600-6, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25611548

ABSTRACT

Functionally gradient materials (FGMs) with gradual and continuous changes of their properties in one or more dimensions are useful in a wide range of applications. However, obtaining such materials with accurate control of the gradient, especially when the gradient is nonlinear, is not easy. In this work, frontal polymerization (FP) was exploited to synthesize polymeric FGMs. We demonstrated that the use of ascending FP with continuous feeding of monomers with computer-controlled peristaltic pumps provided an excellent method for the preparation of functionally gradient materials with programmed gradients. To test the effectiveness of the method, copolymers made from triethylene glycol dimethacrylate/hexyl methacrylate with linear and hyperbolic gradient in composition were synthesized. Differential scanning calorimetry (DSC), Shore A hardness measurements, compression tests, and swelling studies were performed along the length of the materials to assess the relationship between the gradients and the material properties. Glass transition temperatures, determined by DSC, showed a linear dependence on the composition and were in agreement with theoretical values. The other properties showed different and specific behaviors as a function of the compositional gradient.

SELECTION OF CITATIONS
SEARCH DETAIL
...