Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Metabolomics ; 15(8): 113, 2019 08 17.
Article in English | MEDLINE | ID: mdl-31422484

ABSTRACT

INTRODUCTION: Mass insect rearing is becoming increasingly pursued by food and feed industry due to its high sustainability and low environmental impact. Yellow mealworm larvae (Tenebrio molitor) are conventionally reared on wheat bran (WB), but alternative substrates, such as several by-products of the agri-food industry, have shown good prospects for insect rearing. OBJECTIVES: The objective of this study was to investigate on the metabolic and nutritional response of yellow mealworm larvae to dried brewer's spent grains (BSG) and WB used as rearing substrates. METHODS: Proximate, fibre and fatty acid compositions of durum WB and dried BSG were first characterized. Mealworm larvae were fed either WB (WB-L) or BSG (BSG-L) in a trial reproducing a scale rearing condition. Feed efficiency parameters together with proximate and FA composition were determined. Metabolic pathways affected by the dietary treatments were evaluated by means of a targeted metabolomics approach. Proton nuclear magnetic resonance (1H NMR) spectra were acquired on lipid and polar extracts of WB-L and BSG-L and then coupled to multivariate data analysis. Absolute quantitative 1H NMR data were carried out on selected metabolites. RESULTS: BSG-L exhibited better feed conversion ratio and efficiency in conversion of ingested food (P < 0.05) and almost half fat content (P < 0.001) than WB-L. BSG-L also showed higher ω-3 and ω-6 poliunsaturated fatty acids (P < 0.001) and lower content of monounsaturated fatty acids (P < 0.001) than WB-L. BSG-L mobilized body fat towards methylamine accumulation and led to enhanced trehalose catabolism. CONCLUSIONS: Our findings are useful to gain knowledge on the metabolic features that finally affect growth and body composition in reared yellow mealworm larvae.


Subject(s)
Dietary Fiber/metabolism , Fatty Acids/metabolism , Metabolomics , Animal Feed , Animals , Dietary Fiber/administration & dosage , Dietary Fiber/analysis , Fatty Acids/administration & dosage , Fatty Acids/analysis , Larva , Multivariate Analysis , Proton Magnetic Resonance Spectroscopy , Tenebrio
2.
Mar Environ Res ; 130: 113-121, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28754521

ABSTRACT

A detailed characterization of lipid extracts from gonads of P. lividus over a year has been performed combining GC and NMR measurements. For this purpose, sea urchins from two different Sardinian coastal areas were collected monthly. The results underlined a correlation between gonad fatty acids profiles and both water temperature and reproduction process. In particular, EPA and ARA appear to be the most altered fatty acids following seasonal changes. It is suggested that EPA could represent a biomarker of reproduction, reaching a content around 14% during gametogenesis, mainly due to an increase of the sn-1,3 position in TAGs. On the contrary, ARA seems to play a more important role in response to cold acclimatization, which is reflected in a modulation of ARA content in the sn-1,3 position in TAGs.


Subject(s)
Acclimatization , Cold Temperature , Fatty Acids/metabolism , Gonads/chemistry , Paracentrotus/growth & development , Triglycerides/metabolism , Animals , Italy
3.
Article in English | MEDLINE | ID: mdl-27872009

ABSTRACT

Biometric and metabolic responses of gilthead sea bream to cold challenge are described following a growth trial divided into three water temperature steps, namely cooling, cold maintenance and recovery. Experimental data provide a useful description of fish response to thermal stress at both zootechnical and molecular level. Although no mortality has been observed, Nuclear Magnetic Resonance-based metabolomics confirms the marked sensitivity of this fish species to low water temperature, and explains some key molecular events associated to fish response to cold. Increase in hepatosomatic index is associated to liver fat accumulation, as a consequence of lipid mobilization from muscle and other extrahepatic tissues, and metabolic rearrangements linked to homeoviscous adaptation of cellular membranes are observed. Following primary responses to descending temperature from 18°C to 11°C, the energetic metabolism (insulin signaling, glycolysis) is first clearly affected; then, at constant low water temperature (11°C), the most perturbed metabolic pathways are related to methionine cycle in liver, while osmoregulatory function is exerted by TMAO in muscle. Water temperature recovery from 11°C to 18°C stimulates gluconeogenesis and glycogen synthesis activities at hepatic level, although the rate of a thermo-compensatory response seems to be slower than that of the cooling phase. The obtained results are intended to guide novel high-performance feed formulations for gilthead sea bream reared during winter.


Subject(s)
Cold Temperature , Metabolomics , Sea Bream/physiology , Animals , Proton Magnetic Resonance Spectroscopy
4.
Mar Environ Res ; 113: 124-33, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26713559

ABSTRACT

The influence of seasonal and environmental patterns on the lipid fraction of Paracentrotus lividus gonads was investigated. For this purpose, sea urchins were collected monthly over a year from two Sardinian coastal areas. Total lipids in gonads follow an annual cyclical trend, described by a sine wave curve, that it is more influenced by season than by growing area. The lowest lipid content in gonads corresponds to a high percentage of mature reproductive stages (i.e. winter season), independently of sampling area. A variation in total lipid content follows a change in photoperiod, while it is related to sea surface temperature. Multivariate analysis on fatty acid profiles of gonads, detected by gas chromatography, clusters the collected specimens mainly according to the sampling area, secondly according to the sites within the same sampling area and finally according to season.


Subject(s)
Fatty Acids/chemistry , Gonads/metabolism , Lipids/chemistry , Paracentrotus/chemistry , Seasons , Animals , Ecosystem , Fatty Acids/metabolism , Gonads/chemistry , Italy , Lipid Metabolism , Mediterranean Sea
5.
J Colloid Interface Sci ; 457: 298-306, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26196713

ABSTRACT

As a contribution to understand the interactions between mineral surfaces and organic molecules, this study reports an accurate characterization of the bis-(2-ethylhexyl) phthalate (DEHP)-Hydrozincite (DEHP-HY), that has been conduced combining the following techniques: FTIR, NMR, XAS spectroscopies and XRD. XRD patterns indicate that the HY is made of nanocrystals whose size is not influenced by the presence of DEHP. The (1)H NMR analysis of DEHP-HY samples points out the presence of interactions of DEHP with HY. CPMAS NMR analysis suggests that the interaction is operated by ester carbonyl groups while the aliphatic chain, as expected, is not involved. MAS and CPMAS NMR measurements, performed on (13)C ester carbonyl enriched DEHP, allow to demonstrate that there are two ester carbonyl linkage sites interacting at the HY surface: an acid site with a strong link and a second one with weak chemical interactions. Zn K-edge XAS spectroscopy demonstrates that the local atomic structure around Zn in DEHP-HY sample remains essentially unchanged with respect to that of HY. Such a weak structural effect suggests that HY interaction with DEHP is limited to the nanoparticle surface.


Subject(s)
Diethylhexyl Phthalate/chemistry , Nanoparticles/chemistry , Zinc Compounds/chemistry , Absorption, Physicochemical , Binding Sites , Molecular Structure , Surface Properties
6.
Biomed Res Int ; 2015: 627201, 2015.
Article in English | MEDLINE | ID: mdl-25688360

ABSTRACT

We applied a metabolomic approach to monitor the modifications occurring in goat vitreous humor (VH) metabolite composition at different times (0, 6, 12, 18, and 24 hours) after death. The (1)H-NMR analysis of the VH samples was performed for the simultaneous determination of several metabolites (i.e., the metabolite profile) representative of the VH status at different times. Spectral data were analyzed by Principal Component Analysis (PCA) and by Orthogonal Projection to Latent Structures (OPLS) regression technique. PCA and OPLS suggested that different spectral regions were involved in time-related changes. The major time-related compositional changes, here detected, were the increase of lactate, hypoxanthine, alanine, total glutathione, choline/phosphocholine, creatine, and myo-inositol and the decrease of glucose and 3-hydroxybutyrate. We attempted a speculative interpretation of the biological mechanisms underlying these changes. These results show that multivariate statistical approach, based on (1)H NMR metabolite profiling, is a powerful tool for detecting ongoing differences in VH composition and may be applied to investigate several physiological and pathological conditions.


Subject(s)
Metabolome/physiology , Vitreous Body/chemistry , Vitreous Body/physiology , Animals , Autopsy , Goats , Magnetic Resonance Spectroscopy , Principal Component Analysis
7.
PLoS One ; 10(1): e0116379, 2015.
Article in English | MEDLINE | ID: mdl-25617899

ABSTRACT

SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a ß-stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2, ß-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular ß-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, ß-SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056-lin and ß-SB056-lin adopt a ß-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized ß-SB056-lin forms well-ordered ß-strands once electro-neutrality is approached, and it aggregates into more extended ß-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended ß-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic ß-strands.


Subject(s)
Anti-Infective Agents/pharmacology , Hemolytic Agents/pharmacology , Peptides/pharmacology , Surface-Active Agents/pharmacology , Anti-Infective Agents/chemistry , Circular Dichroism , Erythrocytes/drug effects , Escherichia coli/drug effects , Humans , Microbial Sensitivity Tests , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Protein Structure, Secondary , Pseudomonas aeruginosa/drug effects , Sequence Analysis, Protein , Staphylococcus aureus/drug effects , Surface-Active Agents/chemistry
8.
Food Chem ; 159: 71-9, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24767028

ABSTRACT

(1)H NMR spectroscopy was used to investigate changes in the low molecular weight metabolic profile of raw mullet (Mugil spp.) roes during frozen storage and upon processing. NMR data were analysed by Principal Component Analyses (PCA). In the model constructed using frozen roes, no statistical significant metabolic modifications were observed in the first six months of storage, while choline derivatives, dimethylamine, lactate, and most of the free amino acids were identified as changing with statistical significance (p<0.05) in response to frozen storage time of twelve months. The PCA model comparing the metabolic profiles of roes before and after processing showed that the major modifications occurring upon manufacturing were the increase of the choline derivative compounds, uracil, and free amino acids, and a large decrease of taurine, glucose, lactate, and creatine/phosphocreatine. All of the above mentioned modifications reflect the occurrence of chemical/biochemical reactions arising from degradation processes such as lipolysis and proteolysis.


Subject(s)
Fish Products , Food Handling , Food Storage , Magnetic Resonance Spectroscopy/methods , Smegmamorpha/metabolism , Animals , Fish Products/analysis , Freezing , Hydrogen-Ion Concentration , Principal Component Analysis
9.
ACS Appl Mater Interfaces ; 6(2): 795-802, 2014 Jan 22.
Article in English | MEDLINE | ID: mdl-24256457

ABSTRACT

To fully exploit the potential of self-assembly in a single step, we have designed an integrated process to obtain mesoporous graphene nanocomposite films. The synthesis allows incorporating graphene sheets with a small number of defects into highly ordered and transparent mesoporous titania films. The careful design of the porous matrix at the mesoscale ensures the highest diffusivity in the films. These exhibit an enhanced photocatalytic efficiency, while the high order of the mesoporosity is not affected by the insertion of the graphene sheets and is well-preserved after a controlled thermal treatment. In addition, we have proven that the nanocomposite films can be easily processed by deep X-ray lithography to produce functional arrays.

10.
Biochemistry ; 52(41): 7231-41, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24073891

ABSTRACT

Plasticin-L1 (GLVNGLLSSVLGGGQGGGGLLGGIL) is a conformationally flexible glycine/leucine-rich peptide originally isolated from norepinephrine-stimulated skin secretions of the South-American Santa Fe frog Leptodactylus laticeps (Leptodactylidae). A nuclear magnetic resonance/molecular dynamics characterization of plasticin-L1 in the presence of dodecylphosphocholine (DPC) and DPC/sodium dodecylsulphate micelles as membrane-mimetic models showed that the peptide has affinity for both neutral and anionic membranes. The peptide adopts a stable helical conformation at the N-terminal region and a more disordered helix at the C-terminal region, separated by an unstructured loop wherein the highest number of glycines is localized. In both micelle environments, plasticin-L1 slowly inserts between the detergent head groups but always remains localized at the micelle/water interface. Plasticin-L1 lacks direct antimicrobial activity but stimulates cytokine production by macrophages. Incubation with plasticin-L1 (20 µg/mL) significantly (P < 0.05) increased the production of the proinflammatory cytokines IL-1ß, IL-12, IL-23, and TNF-α from unstimulated peritoneal macrophages from both C57BL/6 and BALB/C mice. The peptide also increased IL-6 production by unstimulated (P < 0.01) and lipopolysaccharide-stimulated (P < 0.01) macrophages, whereas the effects on production of the anti-inflammatory cytokine IL-10 were not significant. These findings suggest that plasticin-L1 may play an immunomodulatory role in vivo by stimulating cytokine production from frog skin macrophages in response to microbial pathogens. This peptide may represent a template for the design of peptides with therapeutic applications as immunostimulatory agents.


Subject(s)
Amphibian Proteins/chemistry , Anura/metabolism , Cytokines/immunology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Skin/metabolism , Amphibian Proteins/metabolism , Animals , Cells, Cultured , Eye Proteins , Kinetics , Magnetic Resonance Imaging , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Nerve Tissue Proteins , Skin/chemistry
11.
J Colloid Interface Sci ; 407: 67-75, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23910706

ABSTRACT

This work presents an in-depth investigation of the molecular interactions in the incorporation mechanism of colloidal hydrophobic-capped nanoparticles into the hydrophilic core of reverse microemulsions. (1)H Nuclear Magnetic Resonance (NMR) was employed to obtain molecular level details of the interaction between the nanoparticles capping amphiphiles and the microemulsion surfactants. The model system of choice involved oleic acid (OAC) and oleylamine (OAM) as capping molecules, while igepal-CO520 was the surfactant. The former were studied both in their "free" state and "ligated" one, i.e., bound to nanoparticles. The latter was investigated either in cyclohexane (micellar solution) or in water/cyclohexane microemulsions. The approach was extremely useful to gain a deeper understanding of the equilibria involved in this complex system (oleic acid capped-Bi2S3 in igepal/water/cyclohexane microemulsions). In difference to previously proposed mechanisms, the experimental data showed that the high affinity of the capping ligands for the reverse micelle interior was the drivingforce for the incorporation of the nanoparticles. A simple ligand-exchange mechanism could be ruled out. The collected information about the nanoparticle incorporation mechanism is extremely useful to develop new synthetic routes with an improved/tuned coating efficiency, in order to tailor the core-shell structure preparation.

12.
Pharm Dev Technol ; 18(3): 626-33, 2013.
Article in English | MEDLINE | ID: mdl-22324371

ABSTRACT

The aim of this work was to evaluate silica nanocomposites as topical drug delivery systems for the model drug, caffeine. Preparation, characterization, and skin permeation properties of caffeine-silica nanocomposites are described. Caffeine was loaded into the nanocomposites by grinding the drug with mesoporous silica in a ball mill up to 10 h and the efficiency of the process was studied by XRPD. Formulations were characterized by several methods that include FTIR, XRPD, SEM and TEM. The successful loading of caffeine was demonstrated by XRPD and FTIR. Morphology was studied by SEM that showed particle size reduction while TEM demonstrated formation of both core-shell and multilayered caffeine-silica structures. Solid-state NMR spectra excluded chemical interactions between caffeine and silica matrix, thus confirming that no solid state reactions occurred during the grinding process. Influence of drug inclusion in silica nanocomposite on the in vitro caffeine diffusion into and through the skin was investigated in comparison with a caffeine gel formulation (reference), using newborn pig skin and vertical Franz diffusion cells. Results from the in vitro skin permeation experiments showed that inclusion into the nanocomposite reduced and delayed caffeine permeation from the silica nanocomposite in comparison with the reference, independently from the amount of the tested formulation.


Subject(s)
Chemistry, Pharmaceutical/methods , Nanocomposites/chemistry , Silicon Dioxide/chemical synthesis , Skin/drug effects , Animals , Animals, Newborn , Nanocomposites/administration & dosage , Organ Culture Techniques , Silicon Dioxide/pharmacokinetics , Skin/metabolism , Skin Absorption/drug effects , Skin Absorption/physiology , Swine
13.
Nanoscale Res Lett ; 7(1): 674, 2012 Dec 13.
Article in English | MEDLINE | ID: mdl-23237423

ABSTRACT

We report the formation and characterization of graphene dispersions in two organosilanes, 3-glycidoxypropyl trimethoxysilane (GPTMS) and phenyl triethoxysilane (PhTES) as new reactive solvents. The preparation method was mild and easy and does not produce any chemical modification. The dispersions, which exhibit the Tyndall effect, were characterized by TEM and Raman spectroscopy to confirm the presence of few-layer graphene. Concentrations as high as 0.66 and 8.00 mg/ml were found for PhTES and GPTMS, respectively. The latter is one of the highest values reported for a dispersion of graphene obtained by any method. This finding paves the way for the direct synthesis of polymer nanofiller-containing composites consisting of graphene and reactive silanes to be used in sol-gel synthesis, without any need for solvent removal, thus preventing graphene reaggregation to form graphite flakes.

14.
Biopolymers ; 97(11): 873-81, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22899362

ABSTRACT

Antimicrobial peptides (AMPs) are found in various classes of organisms as part of the innate immune system. Despite high sequence variability, they share common features such as net positive charge and an amphipathic fold when interacting with biologic membranes. Esculentin-1b is a 46-mer frog-skin peptide, which shows an outstanding antimicrobial activity. Experimental studies revealed that the N-terminal fragment encompassing the first 18 residues, Esc(1-18), is responsible for the antimicrobial activity of the whole peptide, with a negligible toxicity toward eukaryotic cells, thus representing an excellent candidate for future pharmaceutical applications. Similarly to most of the known AMPs, Esc(1-18) is expected to act by destroying/permeating the bacterial plasma-membrane but, to date, its 3D structure and the detailed mode of action remains unexplored. Before an in-depth investigation on peptide/membranes interactions could be undertaken, it is necessary to characterize peptide's folding propensity in solution, to understand what is intrinsically due to the peptide sequence, and what is actually driven by the membrane interaction. Circular dichroism and nuclear magnetic resonance spectroscopy were used to determine the structure adopted by the peptide, moving from water to increasing amounts of trifluoroethanol. The results showed that Esc(1-18) has a clear tendency to fold in a helical conformation as hydrophobicity of the environment increases, revealing an intriguing amphipathic structure. The helical folding is adopted only by the N-terminal portion of the peptide, while the rest is unstructured. The presence of a hydrophobic cluster of residues in the C-terminal portion suggests its possible membrane-anchoring role.


Subject(s)
Amphibian Proteins/chemistry , Anti-Infective Agents/analysis , Antimicrobial Cationic Peptides/chemistry , Oligopeptides/analysis , Animals , Anti-Infective Agents/chemical synthesis , Anura , Circular Dichroism , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Models, Molecular , Oligopeptides/chemical synthesis , Protein Folding , Protein Structure, Secondary , Skin/metabolism , Solutions , Static Electricity , Trifluoroethanol/chemistry , Water/chemistry
15.
Eur J Med Chem ; 46(9): 4142-50, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21726922

ABSTRACT

The aim of the present study was to develop a colon targeted delivery system for metronidazole using polymeric prodrug formulation. Two chitosan amide conjugates of metronidazole were prepared by using two different spacers to covalently link the drug to the amino group of the chitosan glucosamine units. Glutaric and succinic hemiesters of metronidazole were thus prepared and then coupled to chitosan to obtain metronidazole-glutaryl- and metronidazole-succinyl-chitosan conjugates. Polymeric prodrugs were characterized by solid state NMR method, namely carbon 13 cross polarization magic angle spinning ((13)C NMR CPMAS). Prodrug stability study was carried out in acid (pH = 1.2) and in alkaline (pH = 7.4) buffers in a thermostatic bath at 37 °C. Drug release from the two prodrugs was studied by incubating each of them with 10% w/v cecal and colonic content of rats. Obtained results showed that both prodrugs were adequately stable in acid environment, while the succinyl conjugate was more stable than the glutaryl one in alkaline buffer. Both the prodrugs released the drug in cecal and colonic content, showing that the two systems could serve as colon specific delivery systems of metronidazole.


Subject(s)
Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Metronidazole/chemical synthesis , Metronidazole/pharmacology , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Animals , Anti-Infective Agents/chemistry , Colon/drug effects , Magnetic Resonance Spectroscopy , Male , Metronidazole/chemistry , Prodrugs/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...