Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(16): 14291-14304, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35573214

ABSTRACT

Oxygen reduction reaction (ORR) is the main reaction at the cathode of a fuel cell that utilizes Pt/C as the benchmark catalyst. Due to sluggish activity, high cost, rare abundance, and durability issues, Pt/C must be replaced by nonprecious, stable, and easily synthesizable materials. This work involves the synthesis of novel, simple, low-cost, and environmentally friendly phenolphthalein-bearing cobalt(II) phthalocyanine polymer, poly(Co II TPpPc) dyad, as an efficient catalyst for ORR. The results of analytical characterizations reveal the formation of the poly(Co II TPpPc) polymer in the pure state. To further enhance the catalytic response of poly(Co II TPpPc), a hybrid composite is prepared using poly(Co II TPpPc) and multiwalled carbon nanotubes (MWCNTs) that increase the surface area and conductivity. The poly(Co II TPpPc) and hybrid composite are separately deposited on the electrode surfaces. The electron microscopy images confirm the uniform distribution of the poly(Co II TPpPc) molecules on the electrode surface and MWCNTs. The poly(Co II TPpPc) and hybrid composite electrodes are evaluated for ORR, and the hybrid composite exhibits better onset potential at 0.803 V versus reversible hydrogen reference electrode for ORR according to linear sweep voltammograms (LSVs). The obtained data are superior compared to those of other carbon-based redox-active materials reported previously and nearer to those of the benchmark catalyst (Pt/C). The rotating disc electrode measurement of the hybrid composite electrode confirms the total number of electrons involved in ORR to be four. Furthermore, the hybrid composite electrode exhibits an excellent stability for 100 LSV scans. The synergistic effect of poly(Co II TPpPc) and MWCNTs leads to the surprisingly high ORR activity due to the improved surface area, conductivity, and interfacial confined surface.

2.
Dalton Trans ; 49(42): 15061-15071, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33104145

ABSTRACT

An indirect electrochemical detoxification and detection platform has been demonstrated for toxic hexavalent chromium (Cr(vi)) based on the biologically important N-4 macrocycle. The research work describes a simple, green, low-cost and potential way for the synthesis of a new N-4 macrocyclic molecule and the molecule is characterized by various analytical and spectroscopic techniques like elemental analysis, TGA, FT-IR, UV-visible, mass spectrometry and NMR spectroscopies, and cyclic voltammetry. The synthesized molecule was explored for the electrochemical reduction of Cr(vi) using both voltammetric and amperometric methods. Amperometric studies exhibited 50 to 2500 nM linear range and the detection limit and quantification limit are 18 and 50 nM, respectively. The common coexisting metal ions did not interfere with Cr(vi) even in the presence of 40-fold excess interfering ions. The real sample analysis was carried out with the fabricated sensor and successfully quantified a recovery result (98-104%) of Cr(vi) in water. This proposed sensor is helpful in the detection of chromium ions in drinking water and is capable of detecting Cr(vi) in the limits set by the World Health Organization (WHO). In addition, this sensor satisfactorily demonstrated considerable stability and reproducibility.

3.
Anal Chem ; 90(21): 12917-12922, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30289243

ABSTRACT

We illustrate that the extent of hydration and consequently the heat of hydration of alkali metal ions can be utilized to control their insertion/deinsertion chemistry in a redox active metal coordination polymer framework (CPF) electrode. The formal redox potential of CPF electrode for cation intercalation is inversely correlated to hydrated ionic radii, with clear distinction between the intercalation of ions across alkali metal series. This leads to noninvasive identification and differentiation of cations in the alkali metal series by utilizing a single sensing platform.

SELECTION OF CITATIONS
SEARCH DETAIL
...