Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793245

ABSTRACT

Metal and metal oxide nanostructured materials have been chemically and physically characterized and tested concerning methylene blue (MB) photoremoval and UV antibacterial activity against Escherichia coli and Staphylococcus aureus. In detail, silver nanoparticles and commercial BaTiO3 nanoparticles were modified to obtain nanocomposites through sonicated sol-gel TiO2 synthesis and the photodeposition of Ag nanoparticles, respectively. The characterization results of pristine nanomaterials and synthetized photocatalysts revealed significant differences in specific surface area (SSA), the presence of impurities in commercial Ag nanoparticles, an anatase phase with brookite traces for TiO2-based nanomaterials, and a mixed cubic-tetragonal phase for BaTiO3. Silver nanoparticles exhibited superior antibacterial activity at different dosages; however, they were inactive in the photoremoval of the dye. The silver-TiOx nanocomposite demonstrated an activity in the UV photodegradation of MB and UV inhibition of bacterial growth. Specifically, TiO2/AgNP (30-50 nm) reduced growth by 487.5 and 1.1 × 103 times for Escherichia coli and Staphylococcus aureus, respectively, at a dose of 500 µg/mL under UV irradiation.

2.
Chemosphere ; 345: 140400, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863212

ABSTRACT

Highly efficient, separable, and stable magnetic iron-based-photocatalysts produced from ultra-stable Y (USY) zeolite were applied, for the first time, to the photo-Fenton removal of phenol under solar light. USY Zeolite with a Si/Al molar ratio of 385 was impregnated under vacuum with an aqueous solution of Fe2+ ions and thermally treated (500-750 °C) in a reducing atmosphere. Three catalysts, Fe-USY500°C-2h, Fe-USY600°C-2h and Fe-USY750°C-2h, containing different amounts of reduced iron species entrapped in the zeolitic matrix, were obtained. The catalysts were thoroughly characterized by absorption spectrometry, X-ray powder diffraction with synchrotron source, followed by Rietveld analysis, X-ray photoelectron spectroscopy, N2 adsorption/desorption at -196 °C, high-resolution transmission electron microscopy and magnetic measurements at room temperature. The catalytic activity was evaluated in a recirculating batch photoreactor irradiated by solar light with online analysis of evolved CO2. Photo-Fenton results showed that the catalyst obtained by thermal treatment at 500 °C for 2 h under a reducing atmosphere (FeUSY-500°C-2h) was able to completely mineralize phenol in 120 min of irradiation time at pH = 4 owing to the presence of a higher content of entrapped nano-sized magnetite particles. The latter promotes the generation of hydroxyl radicals in a more efficient way than the Fe-USY catalysts prepared at 600 and 750 °C because of the higher Fe3O4 content in ultra-stable Y zeolite treated at 500 °C. The FeUSY-500°C-2h catalyst was recovered from the treated water through magnetic separation and reused five times without any significant worsening of phenol mineralization performances. The characterization of the FeUSY-500°C-2h after the photo-Fenton process demonstrated that it was perfectly stable during the reaction. The optimized catalyst was also effective in the mineralization of phenol in tap water. Finally, a possible photo-Fenton mechanism for phenol mineralization was assessed based on experimental tests carried out in the presence of scavenger molecules, demonstrating that hydroxyl radicals play a major role.


Subject(s)
Phenol , Zeolites , Phenol/chemistry , Iron/chemistry , Phenols , Water , Hydrogen Peroxide/chemistry , Catalysis
3.
Nanomaterials (Basel) ; 13(16)2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37630926

ABSTRACT

In this work, photocatalytic materials constituted by Cr-doped TiO2 (Cr-TiO2) decorated with noble metals show high effectiveness in the mineralization of Acid Orange 7 (AO7) and in the disinfection of real river water. The materials were firstly obtained by sol-gel method to get Cr-TiO2 that was subsequently modified by photochemical deposition of Ag or Pd nanoparticles (Ag/Cr-TiO2, Pd/Cr-TiO2). Chemical-physical characterization results evidenced that the noble metals were homogeneously distributed on the Cr-TiO2 surface. By using Pd(0.25%)/Cr-TiO2, the AO7 discoloration efficiency was about 91.4% after only 60 min of visible irradiation, which can be due to the lowest band gap of this material. Moreover, nitrates, chlorides, total hardness, and coliform bacteria content significantly decreased after the treatment of real river water samples (that is contaminated by industrial and domestic effluents) under UV and visible light irradiation in the presence of TiCrOx decorated with noble metals. One hundred percent of elimination rate for E. coli, total coliforms, and other enterobacteriaceae (without regrowth) was achieved by using Ag/Cr-TiO2 as photocatalyst.

4.
Nanomaterials (Basel) ; 13(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36678023

ABSTRACT

A reverse-micelle sol-gel method was chosen for the preparation of Fe-doped TiO2 samples that were employed in the photodegradation of the crystal violet dye under visible light irradiation in a batch reactor. The dopant amount was varied to assess the optimal photocatalyst composition towards the target dye degradation. The photocatalysts were characterized through a multi-technique approach, envisaging XRPD and QPA as obtained by Rietveld refinement, FE-SEM analysis, DR UV-vis spectroscopy, N2 adsorption/desorption isotherms measurement at -196 °C, ζ-potential measurement, and XPS analysis. The physical-chemical characterization showed that the adopted synthesis method allows obtaining NPs with uniform shape and size and promotes the introduction of Fe into the titania matrix, finally affecting the relative amounts of the three occurring polymorphs of TiO2 (anatase, rutile and brookite). By increasing the Fe content, the band gap energy decreases from 3.13 eV (with undoped TiO2) to 2.65 eV (with both 2.5 and 3.5 wt.% nominal Fe contents). At higher Fe content, surface Fe oxo-hydroxide species occur, as shown by DR UV-vis and XP spectroscopies. All the Fe-doped TiO2 photocatalysts were active in the degradation and mineralization of the target dye, showing a TOC removal higher than the undoped sample. The photoactivity under visible light was ascribed both to the band-gap reduction (as confirmed by phenol photodegradation) and to dye sensitization of the photocatalyst surface (as confirmed by photocatalytic tests carried out using different visible-emission spectra LEDs). The main reactive species involved in the dye degradation were determined to be positive holes.

5.
Photochem Photobiol Sci ; 22(1): 185-193, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36181659

ABSTRACT

The impact of light modulation on the decolorization of Acid Orange 7 (AO7) in aqueous solution was examined in this paper. A fixed bed batch photocatalytic reactor with a flat plate geometry, irradiated by 240 white-light LEDs, was used. A successful transfer of visible active photocatalyst (N-TiO2) in powder form on a polystyrene (PS) transparent plate was realized. The structured photocatalyst was characterized through SEM-EDX, Raman and UV-DRS analyses, evidencing the formation of a coating of N-TiO2 in the anatase phase, with a band-gap energy of 2.5 eV, and almost uniform distribution on the PS surface. Different LED dimming techniques, with fixed and variable duty-cycle values, were tested, and four types of light modulation were compared: fixed duty cycle (constant irradiation), sinusoidal variable duty cycle (sinusoidal variable irradiation), triangular variable duty cycle (triangular variable irradiation), and square wave variable duty cycle (square wave variable irradiation). The resulting responsiveness/efficiency of the LED versus the current intensity was evaluated, and the stability of the photocatalyst activity and the influence of optimized irradiation waveforms were examined in the decolorization of 400 mL of 10 ppm AO7 solution. The sinusoidal modulation, with current between 50 and 100 mA and 10 s as the period, shows the highest value of the apparent pseudo-first-order kinetic constant, resulting equal to 0.0044 min-1, at parity of total transmitted photons. An energy saving with the application of sinusoidal irradiation is highlighted with respect to the literature.


Subject(s)
Light , Titanium , Titanium/chemistry , Azo Compounds/chemistry , Catalysis
6.
Materials (Basel) ; 14(11)2021 Jun 05.
Article in English | MEDLINE | ID: mdl-34198890

ABSTRACT

Fe-doped titania photocatalysts (with 1, 2.5, and 3.5 wt. % Fe nominal content), showing photocatalytic activity under visible light, were prepared by a soft-template assisted sol-gel approach in the presence of the triblock copolymer Pluronic P123. An undoped TiO2 photocatalyst was also prepared for comparison. The photocatalysts were characterized by means of X-ray powder Diffraction (XRPD), Quantitative Phase Analysis as obtained by Rietveld refinement, Diffuse Reflectance (DR) UV-Vis spectroscopy, N2 adsorption/desorption at -196 °C, electrophoretic mobility in water (ζ-potential), and X-ray photoelectron spectroscopy (XPS). The physico-chemical characterization showed that all the samples were 100% anatase phase and that iron was present both in the bulk and at the surface of the Fe-doped TiO2. Indeed, the band gap energy (Eg) decreases with the Fe content, with Tauc's plot determined values ranging from 3.35 (undoped TiO2) to 2.70 eV (3.5 wt. % Fe). Notwithstanding the obtained Eg values, the photocatalytic activity results under visible light highlighted that the optimal Fe content was equal to 2.5 wt. % (Tauc's plot determined Eg = 2.74 eV). With the optimized photocatalyst and in selected operating conditions, under visible light it was possible to achieve 90% AO7 discoloration together with a TOC removal of 40% after 180 min. The kinetic behavior of the photocatalyst was also analyzed. Moreover, the tests in the presence of three different scavengers revealed that the main reactive species are (positive) holes and superoxide species. Finally, the optimized photocatalyst was also able to degrade phenol under visible light.

7.
Materials (Basel) ; 12(6)2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30893877

ABSTRACT

In this work, the influence of simple acids in the room temperature sol-gel synthesis of TiO2 was investigated and the efficiency of prepared photocatalysts was evaluated in the removal of caffeine. To improve the photoactivity of TiO2, vanadium-doped TiO2 (VTiO2) samples were obtained starting from different amount of vanadyl sulphate as a dopant source. The samples were centrifuged, washed and finally dried at room temperature, and no calcination step was carried out. The prepared photocatalysts were characterized by different techniques (X-ray powder diffraction (XRD), specific surface area (SSA), ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) and Raman). VTiO2 photocatalysts were tested in the photocatalytic removal of aqueous solutions containing caffeine. The photocatalytic tests were carried out in a recirculating batch cylindrical photoreactor irradiated by a UV LEDs strip (nominal power of 12 W and wavelength emission peak at about 365 nm) surrounding the external surface of the reactor. The optimized VTiO2 photocatalyst was able to reach a caffeine degradation of about 96% after 360 min of UV light irradiation with a total organic carbon (TOC) removal of 72%.

8.
J Environ Sci (China) ; 54: 268-276, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28391938

ABSTRACT

A novel visible light-active photocatalyst formulation (NdT/OP) was obtained by supporting N-doped TiO2 (NdT) particles on up-conversion luminescent organic phosphors (OP). The photocatalytic activity of such catalysts was evaluated for the mineralization process of spiramycin in aqueous solution. The effect of NdT loading in the range 15-60wt.% on bulk and surface characteristics of NdT/OP catalysts was investigated by several chemico-physical characterization techniques. The photocatalytic performance of NdT/OP catalysts in the removal of spyramicin from aqueous solution was assessed through photocatalytic tests under visible light irradiation. Total organic carbon (TOC) of aqueous solution, and CO and CO2 gas concentrations evolved during the photodegradation were analyzed. A dramatic enhancement of photocatalytic activity of the photostructured visible active NdT/OP catalysts, compared to NdT catalyst, was observed. Only CO2 was detected in gas-phase during visible light irradiation, proving that the photocatalytic process is effective in the mineralization of spiramycin, reaching very high values of TOC removal. The photocatalyst NdT/OP at 30wt.% of NdT loading showed the highest photocatalytic activity (58% of TOC removed after 180min irradiation against only 31% removal after 300min of irradiation of NdT). We attribute this enhanced activity to the high effectiveness in the utilization of visible light through improved light harvesting and exploiting. OP particles act as "photoactive support", able to be excited by the external visible light irradiation, and reissue luminescence of wavelength suitable to promote NdT photomineralization activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Nitrogen/chemistry , Spiramycin/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Light , Models, Chemical , Photolysis , Ultraviolet Rays
9.
Sci Total Environ ; 554-555: 1-6, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-26945469

ABSTRACT

The release of antibiotics into the environment can result in antibiotic resistance (AR) spread, which in turn can seriously affect human health. Antibiotic resistant bacteria have been detected in different aquatic environments used as drinking water source. Water disinfection may be a possible solution to minimize AR spread but conventional processes, such as chlorination, result in the formation of dangerous disinfection by-products. In this study advanced oxidation processes (AOPs), namely H2O2/UV, TiO2/UV and N-TiO2/UV, have been compared with chlorination in the inactivation of an AR Escherichia coli (E. coli) strain in surface water. TiO2 P25 and nitrogen doped TiO2 (N-TiO2), prepared by sol-gel method at two different synthesis temperatures (0 and -20°C), were investigated in heterogeneous photocatalysis experiments. Under the investigated conditions, chlorination (1.0 mg L(-1)) was the faster process (2.5 min) to achieve total inactivation (6 Log). Among AOPs, H2O2/UV resulted in the best inactivation rate: total inactivation (6 Log) was achieved in 45 min treatment. Total inactivation was not observed (4.5 Log), also after 120 min treatment, only for N-doped TiO2 synthesized at 0°C. Moreover, H2O2/UV and chlorination processes were evaluated in terms of cytotoxicity potential by means of 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenylte-trazolium colorimetric test on a human-derived cell line and they similarly affected HepG2 cells viability.


Subject(s)
Disinfection/methods , Escherichia coli/physiology , Water Purification/methods , Drug Resistance, Microbial , Halogenation , Hydrogen Peroxide , Oxidation-Reduction , Ultraviolet Rays
10.
Membranes (Basel) ; 3(3): 126-35, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-24956941

ABSTRACT

The aim of this work is to design and integrate an optimized batch membrane process in a conventional purification process used for the treatment of tannery wastewater. The integration was performed by using two spiral wound membrane modules in series, that is, nanofiltration and reverse osmosis, as substitutes to the biological reactor. The membrane process was designed in terms of sensible fouling issues reduction, which may be observed on the nanofiltration membrane if no optimization is performed. The entity of the fouling phenomena was estimated by pressure cycling measurements, determining both the critical and the threshold flux on the nanofiltration membrane. The obtained results were used to estimate the need of the overdesign of the membrane plant, as well as to define optimized operating conditions in order to handle fouling issues correctly for a long period of time. Finally, the developed membrane process was compared, from a technical and economic point of view, with the conventional biological process, widely offered as an external service near tannery production sites, and, here, proposed to be substituted by membrane technologies.

11.
J Nanosci Nanotechnol ; 11(11): 10053-62, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22413344

ABSTRACT

The synthesis of polynorbornene by ring opening metathesis polymerization (ROMP), in the presence of 1st and 2nd generation Grubbs catalyst-functionalized multiwalled carbon nanotubes (MWCNT), has been studied. MWCNTs were obtained by catalytic chemical vapour deposition (CCVD) of ethylene. A full characterization of the 1st and 2nd generation Grubbs catalyst-functionalized nanotubes was performed by FTIR and TG-DTG-MS. The amount of catalyst grafted to the nanotube surface was estimated. The activity of the catalyst-functionalized nanotubes in ROMP of 2-norbornene was found to be similar to that of bare 1st and 2nd generation Grubbs catalysts. The characterization of polynorbornene-carbon nanotube composites shows that the nanotubes are well dispersed in the polymer matrix.

SELECTION OF CITATIONS
SEARCH DETAIL
...