Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-37036693

ABSTRACT

Replication fork reversal is an important mechanism to protect the stability of stalled forks and thereby preserve genomic integrity. While multiple enzymes have been identified that can remodel forks, their regulation remains poorly understood. Here, we demonstrate that the ubiquitin ligase RFWD3, whose mutation causes Fanconi Anemia, promotes recruitment of the DNA translocase ZRANB3 to stalled replication forks and ubiquitinated sites of DNA damage. Using electron microscopy, we show that RFWD3 stimulates fork remodeling in a ZRANB3-epistatic manner. Fork reversal is known to promote nascent DNA degradation in BRCA2-deficient cells. Consistent with a role for RFWD3 in fork reversal, inactivation of RFWD3 in these cells rescues fork degradation and collapse, analogous to ZRANB3 inactivation. RFWD3 loss impairs ZRANB3 localization to spontaneous nuclear foci induced by inhibition of the PCNA deubiquitinase USP1. We demonstrate that RFWD3 promotes PCNA ubiquitination and interaction with ZRANB3, providing a mechanism for RFWD3-dependent recruitment of ZRANB3. Together, these results uncover a new role for RFWD3 in regulating ZRANB3-dependent fork remodeling.


Subject(s)
DNA Helicases , DNA Replication , DNA , Ubiquitin-Protein Ligases , DNA/genetics , DNA Damage , DNA Replication/genetics , DNA-Binding Proteins/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , Ubiquitination
2.
Mol Cell ; 82(22): 4218-4231.e8, 2022 11 17.
Article in English | MEDLINE | ID: mdl-36400008

ABSTRACT

POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.


Subject(s)
DNA Replication , DNA-Binding Proteins , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , DNA-Binding Proteins/genetics , Homologous Recombination/genetics , DNA
3.
Comput Math Methods Med ; 2021: 5288844, 2021.
Article in English | MEDLINE | ID: mdl-34697554

ABSTRACT

We compared the prognostic value of myocardial perfusion imaging (MPI) by conventional- (C-) single-photon emission computed tomography (SPECT) and cadmium-zinc-telluride- (CZT-) SPECT in a cohort of patients with suspected or known coronary artery disease (CAD) using machine learning (ML) algorithms. A total of 453 consecutive patients underwent stress MPI by both C-SPECT and CZT-SPECT. The outcome was a composite end point of all-cause death, cardiac death, nonfatal myocardial infarction, or coronary revascularization procedures whichever occurred first. ML analysis performed through the implementation of random forest (RF) and k-nearest neighbors (KNN) algorithms proved that CZT-SPECT has greater accuracy than C-SPECT in detecting CAD. For both algorithms, the sensitivity of CZT-SPECT (96% for RF and 60% for KNN) was greater than that of C-SPECT (88% for RF and 53% for KNN). A preliminary univariate analysis was performed through Mann-Whitney tests separately on the features of each camera in order to understand which ones could distinguish patients who will experience an adverse event from those who will not. Then, a machine learning analysis was performed by using Matlab (v. 2019b). Tree, KNN, support vector machine (SVM), Naïve Bayes, and RF were implemented twice: first, the analysis was performed on the as-is dataset; then, since the dataset was imbalanced (patients experiencing an adverse event were lower than the others), the analysis was performed again after balancing the classes through the Synthetic Minority Oversampling Technique. According to KNN and SVM with and without balancing the classes, the accuracy (p value = 0.02 and p value = 0.01) and recall (p value = 0.001 and p value = 0.03) of the CZT-SPECT were greater than those obtained by C-SPECT in a statistically significant way. ML approach showed that although the prognostic value of stress MPI by C-SPECT and CZT-SPECT is comparable, CZT-SPECT seems to have higher accuracy and recall.


Subject(s)
Coronary Artery Disease/diagnostic imaging , Machine Learning , Myocardial Perfusion Imaging/methods , Tomography, Emission-Computed, Single-Photon/methods , Aged , Algorithms , Cadmium , Computational Biology , Exercise Test/methods , Exercise Test/statistics & numerical data , Female , Humans , Male , Middle Aged , Myocardial Perfusion Imaging/statistics & numerical data , Neural Networks, Computer , Prognosis , Tellurium , Tomography, Emission-Computed, Single-Photon/statistics & numerical data , Zinc
4.
Mol Cell ; 81(19): 4008-4025.e7, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34508659

ABSTRACT

BRCA1/2 mutant tumor cells display an elevated mutation burden, the etiology of which remains unclear. Here, we report that these cells accumulate ssDNA gaps and spontaneous mutations during unperturbed DNA replication due to repriming by the DNA primase-polymerase PRIMPOL. Gap accumulation requires the DNA glycosylase SMUG1 and is exacerbated by depletion of the translesion synthesis (TLS) factor RAD18 or inhibition of the error-prone TLS polymerase complex REV1-Polζ by the small molecule JH-RE-06. JH-RE-06 treatment of BRCA1/2-deficient cells results in reduced mutation rates and PRIMPOL- and SMUG1-dependent loss of viability. Through cellular and animal studies, we demonstrate that JH-RE-06 is preferentially toxic toward HR-deficient cancer cells. Furthermore, JH-RE-06 remains effective toward PARP inhibitor (PARPi)-resistant BRCA1 mutant cells and displays additive toxicity with crosslinking agents or PARPi. Collectively, these studies identify a protective and mutagenic role for REV1-Polζ in BRCA1/2 mutant cells and provide the rationale for using REV1-Polζ inhibitors to treat BRCA1/2 mutant tumors.


Subject(s)
DNA Breaks, Single-Stranded , DNA Primase/metabolism , DNA Replication , DNA, Neoplasm/biosynthesis , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Multifunctional Enzymes/metabolism , Neoplasms/enzymology , Nucleotidyltransferases/metabolism , Recombinational DNA Repair , Animals , Antineoplastic Agents/pharmacology , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , BRCA2 Protein/genetics , BRCA2 Protein/metabolism , Cell Line, Tumor , DNA Primase/genetics , DNA, Neoplasm/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Female , HEK293 Cells , Humans , Mice, Nude , Multifunctional Enzymes/genetics , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Nucleic Acid Synthesis Inhibitors/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , Xenograft Model Antitumor Assays
5.
Cell Rep ; 21(2): 333-340, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29020621

ABSTRACT

Fanconi anemia (FA) is a genetic disorder characterized by a defect in DNA interstrand crosslink (ICL) repair, chromosomal instability, and a predisposition to cancer. Recently, two RAD51 mutations were reported to cause an FA-like phenotype. Despite the tight association of FA/HR proteins with replication fork (RF) stabilization during normal replication, it remains unknown how FA-associated RAD51 mutations affect replication beyond ICL lesions. Here, we report that these mutations fail to protect nascent DNA from MRE11-mediated degradation during RF stalling in Xenopus laevis egg extracts. Reconstitution of DNA protection in vitro revealed that the defect arises directly due to altered RAD51 properties. Both mutations induce pronounced structural changes and RAD51 filament destabilization that is not rescued by prevention of ATP hydrolysis due to aberrant ATP binding. Our results further interconnect the FA pathway with DNA replication and provide mechanistic insight into the role of RAD51 in recombination-independent mechanisms of genome maintenance.


Subject(s)
DNA Replication , Fanconi Anemia/genetics , Mutation , Rad51 Recombinase/metabolism , Adenosine Triphosphate/metabolism , Animals , Humans , MRE11 Homologue Protein/metabolism , Protein Binding , Protein Stability , Rad51 Recombinase/genetics , Xenopus
6.
Mol Cell ; 68(2): 414-430.e8, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-29053959

ABSTRACT

To ensure the completion of DNA replication and maintenance of genome integrity, DNA repair factors protect stalled replication forks upon replication stress. Previous studies have identified a critical role for the tumor suppressors BRCA1 and BRCA2 in preventing the degradation of nascent DNA by the MRE11 nuclease after replication stress. Here we show that depletion of SMARCAL1, a SNF2-family DNA translocase that remodels stalled forks, restores replication fork stability and reduces the formation of replication stress-induced DNA breaks and chromosomal aberrations in BRCA1/2-deficient cells. In addition to SMARCAL1, other SNF2-family fork remodelers, including ZRANB3 and HLTF, cause nascent DNA degradation and genomic instability in BRCA1/2-deficient cells upon replication stress. Our observations indicate that nascent DNA degradation in BRCA1/2-deficient cells occurs as a consequence of MRE11-dependent nucleolytic processing of reversed forks generated by fork remodelers. These studies provide mechanistic insights into the processes that cause genome instability in BRCA1/2-deficient cells.


Subject(s)
BRCA2 Protein/deficiency , DNA Breaks , DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/deficiency , Cell Line, Tumor , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Genomic Instability , Humans , MRE11 Homologue Protein , Transcription Factors/genetics
7.
Mol Cell ; 67(5): 867-881.e7, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28757209

ABSTRACT

Brca2 deficiency causes Mre11-dependent degradation of nascent DNA at stalled forks, leading to cell lethality. To understand the molecular mechanisms underlying this process, we isolated Xenopus laevis Brca2. We demonstrated that Brca2 protein prevents single-stranded DNA gap accumulation at replication fork junctions and behind them by promoting Rad51 binding to replicating DNA. Without Brca2, forks with persistent gaps are converted by Smarcal1 into reversed forks, triggering extensive Mre11-dependent nascent DNA degradation. Stable Rad51 nucleofilaments, but not RPA or Rad51T131P mutant proteins, directly prevent Mre11-dependent DNA degradation. Mre11 inhibition instead promotes reversed fork accumulation in the absence of Brca2. Rad51 directly interacts with the Pol α N-terminal domain, promoting Pol α and δ binding to stalled replication forks. This interaction likely promotes replication fork restart and gap avoidance. These results indicate that Brca2 and Rad51 prevent formation of abnormal DNA replication intermediates, whose processing by Smarcal1 and Mre11 predisposes to genome instability.


Subject(s)
BRCA2 Protein/metabolism , DNA Replication , DNA/biosynthesis , Rad51 Recombinase/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism , Animals , BRCA2 Protein/genetics , Binding Sites , DNA/genetics , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Polymerase I/metabolism , DNA Polymerase III/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Female , Genomic Instability , Humans , MRE11 Homologue Protein , Male , Mutation , Protein Binding , Rad51 Recombinase/genetics , Replication Origin , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Time Factors , Xenopus Proteins/genetics , Xenopus laevis/genetics
8.
Methods Enzymol ; 591: 211-232, 2017.
Article in English | MEDLINE | ID: mdl-28645370

ABSTRACT

Although many players of the DNA damage response and DNA repair have been identified in several systems their biochemical role is still poorly understood. The use of the Xenopus laevis egg extract cell-free system allowed biochemical dissection of DNA replication and cell cycle events in a complex biological context. The possibility of manipulating the protein content by using protein depletion procedures makes egg extract a powerful system to study proteins whose inactivation results in cellular lethality. The egg extract has been increasingly used to study DNA damage response and the coordination of DNA replication with DNA repair. The recent development of advanced imaging techniques based on electron microscopy has allowed the characterization of replication intermediates formed in the absence of essential DNA repair proteins. These studies have been important to understand how cells maintain genome stability under unchallenged and stressful conditions. Here, we present a collection of protocols that have been developed to recapitulate DNA damage response activated by chromosome breakage in egg extract and to isolate replication intermediates for electron microscopy analysis using sperm nuclei or more defined genomic substrates.


Subject(s)
DNA Damage , DNA Replication , Models, Biological , Animals , Chromatin/metabolism , Ovum/cytology , Xenopus laevis
9.
FEBS Lett ; 591(8): 1083-1100, 2017 04.
Article in English | MEDLINE | ID: mdl-28079255

ABSTRACT

Coordination between DNA replication and DNA repair ensures maintenance of genome integrity, which is lost in cancer cells. Emerging evidence has linked homologous recombination (HR) proteins RAD51, BRCA1 and BRCA2 to the stability of nascent DNA. This function appears to be distinct from double-strand break (DSB) repair and is in part due to the prevention of MRE11-mediated degradation of nascent DNA at stalled forks. The role of RAD51 in fork protection resembles the activity described for its prokaryotic orthologue RecA, which prevents nuclease-mediated degradation of DNA and promotes replication fork restart in cells challenged by DNA-damaging agents. Here, we examine the mechanistic aspects of HR-mediated fork protection, addressing the crosstalk between HR and replication proteins.


Subject(s)
BRCA1 Protein/metabolism , BRCA2 Protein/metabolism , DNA Replication , DNA-Binding Proteins/antagonists & inhibitors , Homologous Recombination , Models, Biological , Rad51 Recombinase/metabolism , Acid Anhydride Hydrolases , Animals , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromosomal Instability , DNA Breaks , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , MRE11 Homologue Protein , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Protein Multimerization , Replication Protein A/antagonists & inhibitors , Replication Protein A/chemistry , Replication Protein A/metabolism
10.
Int J Dev Biol ; 60(7-8-9): 221-227, 2016.
Article in English | MEDLINE | ID: mdl-27759152

ABSTRACT

The correct duplication of genetic information is essential to maintain genome stability, which is lost in cancer cells. Replication fork integrity is ensured by a number of DNA metabolism proteins that assist replication of chromatin regions difficult to replicate due to their intrinsic DNA sequence composition, coordinate repair of DNA molecules resulting from aberrant replication events or protect replication forks in the presence of lesions impairing their progression. Some DNA metabolism genes involved in DNA repair are essential in higher eukaryotes even in unchallenged conditions, suggesting the existence of biological processes requiring these specialized functions in organisms with complex genomes. The impact on cell survival of null mutants of many DNA metabolism genes has precluded complete in depth analysis of their function. Cell free extracts represent a fundamental tool to overcome survival issues. The Xenopus laevis egg cell free extract is an ideal system to study replication-associated functions of essential genes. We are taking advantage of this system together with innovative imaging and proteomic based experimental approaches to characterize the molecular function of essential DNA metabolism proteins. Using this approach we have uncovered the role of some essential homologous recombination and fork protection proteins in chromosomal DNA replication and we have characterized some of the factors required for faithful replication of specific vertebrate genomic regions. This approach will be instrumental to study the molecular mechanisms underlying the function of a number of essential DNA metabolism proteins involved in the maintenance of genome stability in complex genomes.


Subject(s)
DNA Replication , Oocytes/metabolism , Xenopus laevis/genetics , Animals , Cell-Free System , Chromatin , Female
12.
Nat Commun ; 7: 11638, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27189187

ABSTRACT

Cell division cycle protein 45 (Cdc45) is required for DNA synthesis during genome duplication, as a component of the Cdc45-MCM-GINS (CMG) helicase. Despite its essential biological function, its biochemical role in DNA replication has remained elusive. Here we report the 2.1-Å crystal structure of human Cdc45, which confirms its evolutionary link with the bacterial RecJ nuclease and reveals several unexpected features that underpin its function in eukaryotic DNA replication. These include a long-range interaction between N- and C-terminal DHH domains, blocking access to the DNA-binding groove of its RecJ-like fold, and a helical insertion in its N-terminal DHH domain, which appears poised for replisome interactions. In combination with available electron microscopy data, we validate by mutational analysis the mechanism of Cdc45 association with the MCM ring and GINS co-activator, critical for CMG assembly. These findings provide an indispensable molecular basis to rationalize the essential role of Cdc45 in genomic duplication.


Subject(s)
Cell Cycle Proteins/chemistry , DNA Replication , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Crystallography, X-Ray , DNA Helicases/metabolism , Exodeoxyribonucleases/chemistry , Female , Humans , Minichromosome Maintenance Proteins/metabolism , Protein Conformation , Xenopus laevis
13.
Nat Cell Biol ; 18(6): 684-91, 2016 06.
Article in English | MEDLINE | ID: mdl-27111843

ABSTRACT

Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Proteins/metabolism , Centromere/metabolism , DNA Replication , Animals , Cell Cycle Checkpoints/genetics , DNA/metabolism , DNA Damage/genetics , DNA Repair , DNA-Binding Proteins/metabolism , Humans , Protein Kinases/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/metabolism
14.
Biochem J ; 454(2): 333-43, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23750504

ABSTRACT

The eukaryotic DNA replication protein Mcm10 (mini-chromosome maintenance 10) associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Another essential component of the eukaryotic replication fork is Cdc45 (cell division cycle 45), which is required for both initiation and elongation of DNA replication. In the present study we characterize, for the first time, the physical and functional interactions of human Mcm10 and Cdc45. First we demonstrated that Mcm10 and Cdc45 interact in cell-free extracts. We then analysed the role of each of the Mcm10 domains: N-terminal, internal and C-terminal (NTD, ID and CTD respectively). We have detected a direct physical interaction between CTD and Cdc45 by both in vitro co-immunoprecipitation and surface plasmon resonance experiments. On the other hand, we have found that the interaction of the Mcm10 ID with Cdc45 takes place only in the presence of DNA. Furthermore, we found that the isolated ID and CTD domains are fully functional, retaining DNA-binding capability with a clear preference for bubble and fork structures, and that they both enhance Cdc45 DNA-binding affinity. The results of the present study demonstrate that human Mcm10 and Cdc45 directly interact and establish a mutual co-operation in DNA binding.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Models, Molecular , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell-Free System , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Electrophoretic Mobility Shift Assay , HEK293 Cells , Humans , Immunoprecipitation , Kinetics , Minichromosome Maintenance Proteins , Molecular Docking Simulation , Molecular Weight , Nucleic Acid Conformation , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Protein Conformation , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Surface Plasmon Resonance
15.
Appl Microbiol Biotechnol ; 97(9): 3949-64, 2013 May.
Article in English | MEDLINE | ID: mdl-22805786

ABSTRACT

The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh2 gene was heterologously overexpressed in Escherichia coli, and the resulting protein (SaADH2) was purified to homogeneity and both biochemically and structurally characterized. The crystal structure of the SaADH2 NADH-bound form reveals that the enzyme is a tetramer consisting of identical 27,024-Da subunits, each composed of 255 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 80 °C and a 30-min half-inactivation temperature of ∼88 °C. It also shows good tolerance to common organic solvents and a strict requirement for NAD(H) as the coenzyme. SaADH2 displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-ketoesters, but is poorly active on aliphatic, cyclic and aromatic alcohols, showing no activity on aldehydes. Interestingly, the enzyme catalyses the asymmetric reduction of benzil to (R)-benzoin with both excellent conversion (98 %) and optical purity (98 %) by way of an efficient in situ NADH-recycling system involving a second thermophilic ADH. The crystal structure of the binary complex SaADH2-NADH, determined at 1.75 Å resolution, reveals details of the active site providing hints on the structural basis of the enzyme enantioselectivity.


Subject(s)
Archaeal Proteins/chemistry , Archaeal Proteins/metabolism , Fatty Acid Synthases/chemistry , Fatty Acid Synthases/metabolism , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Phenylglyoxal/analogs & derivatives , Sulfolobus acidocaldarius/enzymology , Amino Acid Sequence , Archaeal Proteins/genetics , Benzoin/metabolism , Enzyme Stability , Fatty Acid Synthases/genetics , Hydrogen-Ion Concentration , Molecular Sequence Data , NADH, NADPH Oxidoreductases/genetics , Phenylglyoxal/metabolism , Sequence Homology, Amino Acid , Stereoisomerism , Substrate Specificity
16.
J Biol Chem ; 287(6): 4121-8, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22147708

ABSTRACT

Cdc45 is an essential protein conserved in all eukaryotes and is involved both in the initiation of DNA replication and the progression of the replication fork. With GINS, Cdc45 is an essential cofactor of the Mcm2-7 replicative helicase complex. Despite its importance, no detailed information is available on either the structure or the biochemistry of the protein. Intriguingly, whereas homologues of both GINS and Mcm proteins have been described in Archaea, no counterpart for Cdc45 is known. Herein we report a bioinformatic analysis that shows a weak but significant relationship among eukaryotic Cdc45 proteins and a large family of phosphoesterases that has been described as the DHH family, including inorganic pyrophosphatases and RecJ ssDNA exonucleases. These enzymes catalyze the hydrolysis of phosphodiester bonds via a mechanism involving two Mn(2+) ions. Only a subset of the amino acids that coordinates Mn(2+) is conserved in Cdc45. We report biochemical and structural data on the recombinant human Cdc45 protein, consistent with the proposed DHH family affiliation. Like the RecJ exonucleases, the human Cdc45 protein is able to bind single-stranded, but not double-stranded DNA. Small angle x-ray scattering data are consistent with a model compatible with the crystallographic structure of the RecJ/DHH family members.


Subject(s)
Bacterial Proteins/genetics , Cell Cycle Proteins/genetics , DNA Replication/physiology , Evolution, Molecular , Exodeoxyribonucleases/genetics , Models, Molecular , Phosphoric Diester Hydrolases/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Catalysis , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , Humans , Manganese/chemistry , Manganese/metabolism , Phosphoric Diester Hydrolases/chemistry , Phosphoric Diester Hydrolases/metabolism , Sequence Homology, Amino Acid , Structure-Activity Relationship
17.
J Clin Endocrinol Metab ; 90(1): 198-202, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15483087

ABSTRACT

Cerebrospinal fluid (CSF) levels of rT(3) were evaluated in 21 euthyroid patients with overt Alzheimer's disease (AD) and 18 matched healthy controls. The assessment also included transthyretin and total T(3) and T(4) CSF concentrations. Despite normal circulating thyroid hormone levels, AD subjects showed significantly increased rT(3) levels and an increased rT(3) to T(4) ratio in the face of unchanged CSF total T(4) and transthyretin levels. These results suggest an abnormal intracerebral thyroid hormone metabolism and possibly the occurrence of brain hypothyroidism, either as a secondary consequence of the ongoing process or as a cofactor in the progression of the disease.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Triiodothyronine/cerebrospinal fluid , Aged , Female , Humans , Male , Middle Aged , Thyroid Hormones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...