Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Materials (Basel) ; 11(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954067

ABSTRACT

We have prepared Ca1−xKxWO4−x/2 solid solutions with the Scheelite-type structure to investigate high-temperature electrochemical properties. Room-temperature X-ray diffraction suggested the solid solution range was x ≤ 0.2, since the second phase presumably of K2WO4 was detected for x = 0.3. For all the substituted samples up to x = 0.4, a large jump in conductivity has been observed around 500 °C. At higher temperatures, oxide ion conduction is found to be predominant even for x = 0.4, exceeding the solution limit estimated from the room-temperature XRD. The conductivity at high temperature is essentially proportional to the amount of substituted potassium ions up to x = 0.4, indicating that oxide ion conduction is associated with the formed oxide ion vacancy. High-temperature X-ray diffraction detected no apparent change in lattice parameters around 500 °C for x = 0.1, and the remaining second phase seems to be incorporated into the Scheelite lattice at high temperatures.

2.
ACS Omega ; 2(6): 2994-3001, 2017 Jun 30.
Article in English | MEDLINE | ID: mdl-31457634

ABSTRACT

Graphene oxide (GO) is an ultrathin carbon nanosheet with various oxygen-containing functional groups. The utilization of GO has attracted tremendous attention in a number of areas, such as electronics, optics, optoelectronics, catalysis, and bioengineering. Here, we report the development of GO-based solid electrolyte gas sensors that can continuously detect combustible gases at low concentrations. GO membranes were fabricated by filtration using a colloidal solution containing GO nanosheets synthesized by a modified Hummers' method. The GO membrane exposed to humid air showed good proton-conducting properties at room temperature, as confirmed by hydrogen concentration cell measurements and complex impedance analyses. Gas sensor devices were fabricated using the GO membrane fitted with a Pt/C sensing electrode. The gas-sensing properties were examined by potentiometric and amperometric techniques. The GO sensor showed high, stable, and reproducible responses to hydrogen at parts per million concentrations in humid air at room temperature. The sensing mechanism is explained in terms of the mixed-potential theory. Our results suggest the promising capability of GO for the electrochemical detection of combustible gases.

3.
Neuroimage ; 91: 138-45, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24418508

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique for the noninvasive monitoring of human brain activation states utilizing the coupling between neural activity and regional cerebral hemodynamics. Illuminators and detectors, together constituting optodes, are placed on the scalp, but due to the presence of head tissues, an inter-optode distance of more than 2.5cm is necessary to detect cortical signals. Although direct cortical monitoring with fNIRS has been pursued, a high-resolution visualization of hemodynamic changes associated with sensory, motor and cognitive neural responses directly from the cortical surface has yet to be realized. To acquire robust information on the hemodynamics of the cortex, devoid of signal complications in transcranial measurement, we devised a functional near-infrared cortical imaging (fNCI) technique. Here we demonstrate the first direct functional measurement of temporal and spatial patterns of cortical hemodynamics using the fNCI technique. For fNCI, inter-optode distance was set at 5mm, and light leakage from illuminators was prevented by a special optode holder made of a light-shielding rubber sheet. fNCI successfully detected the somatotopy of pig nostril sensation, as assessed in comparison with concurrent and sequential somatosensory-evoked potential (SEP) measurements on the same stimulation sites. Accordingly, the fNCI system realized a direct cortical hemodynamic measurement with a spatial resolution comparable to that of SEP mapping on the rostral region of the pig brain. This study provides an important initial step toward realizing functional cortical hemodynamic monitoring during neurosurgery of human brains.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/anatomy & histology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Nasal Cavity/anatomy & histology , Neuroimaging/methods , Spectroscopy, Near-Infrared/methods , Algorithms , Animals , Cerebral Cortex/physiology , Data Interpretation, Statistical , Electric Stimulation , Electromyography , Evoked Potentials, Somatosensory/physiology , Hemoglobins/metabolism , Male , Nasal Cavity/physiology , Oxyhemoglobins/metabolism , Somatosensory Cortex/physiology , Swine
4.
Neurophotonics ; 1(1): 015004, 2014 Jul.
Article in English | MEDLINE | ID: mdl-26157973

ABSTRACT

An increasing number of functional near-infrared spectroscopy (fNIRS) studies utilize a general linear model (GLM) approach, which serves as a standard statistical method for functional magnetic resonance imaging (fMRI) data analysis. While fMRI solely measures the blood oxygen level dependent (BOLD) signal, fNIRS measures the changes of oxy-hemoglobin (oxy-Hb) and deoxy-hemoglobin (deoxy-Hb) signals at a temporal resolution severalfold higher. This suggests the necessity of adjusting the temporal parameters of a GLM for fNIRS signals. Thus, we devised a GLM-based method utilizing an adaptive hemodynamic response function (HRF). We sought the optimum temporal parameters to best explain the observed time series data during verbal fluency and naming tasks. The peak delay of the HRF was systematically changed to achieve the best-fit model for the observed oxy- and deoxy-Hb time series data. The optimized peak delay showed different values for each Hb signal and task. When the optimized peak delays were adopted, the deoxy-Hb data yielded comparable activations with similar statistical power and spatial patterns to oxy-Hb data. The adaptive HRF method could suitably explain the behaviors of both Hb parameters during tasks with the different cognitive loads during a time course, and thus would serve as an objective method to fully utilize the temporal structures of all fNIRS data.

5.
Brain Lang ; 126(2): 208-16, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23800710

ABSTRACT

In Japan, verbal fluency tasks are commonly utilized as a standard paradigm for neuropsychological testing of cognitive and linguistic abilities. The Japanese "letter fluency task" is a mora/letter fluency task based on the phonological and orthographical characteristics of the Japanese language. Whether there are similar activation patterns across languages or a Japanese-specific mora/letter fluency pattern is not certain. We investigated the neural correlates of overt mora/letter and category fluency tasks in healthy Japanese. The category fluency task activated the bilateral fronto-temporal language-related regions with left-superior lateralization, while the mora/letter fluency task led to wider activation including the inferior parietal regions (left and right supramarginal gyrus). Specific bilateral supramarginal activation during the mora/letter fluency task in Japanese was distinct from that of similar letter fluency tasks in syllable-alphabet-based languages: this might be due to the requirement of additional phonological processing and working memory, or due to increased cognitive load in general.


Subject(s)
Brain Mapping , Cerebral Cortex/physiology , Speech/physiology , Adult , Asian People , Female , Humans , Language , Male , Middle Aged , Signal Processing, Computer-Assisted , Spectroscopy, Near-Infrared , Young Adult
6.
Rinsho Shinkeigaku ; 52(11): 1188-90, 2012.
Article in Japanese | MEDLINE | ID: mdl-23196558

ABSTRACT

Functional near-infrared spectroscopy (fNIRS) may be suited for functional monitoring during swallowing as it is comparatively immune to body movement. However, still fNIRS measurement on swallowing poses a technical problem that it may often involve motion artifacts. Although there is no single way to solve this problem, technical insights have been available form related studies in the past. Here we introduce two examples for analyzing data rich in motion artifacts putting emphasis on temporal structures of the data. The first is about fNIRS assessment of language function during overt naming tasks. Since data were temporally continuous, we adopted a general linear model with regression to a canonical hemodynamic response function to extract cortical activations related to overt naming tasks. The second example is about fNIRS assessment on go/no-go task performance with or without methylphenidate administration in Attention Deficit Hyperactivity Disorder (ADHD) children. Since data were disrupted by unexpected motion artifacts, we simplified temporal data structures by averaging to extract only robust signals. Thus, we indicated that the optimum analytical strategy varies depending on the temporal structures of the data.


Subject(s)
Brain Mapping/methods , Functional Neuroimaging/methods , Spectroscopy, Near-Infrared , Deglutition/physiology , Humans
7.
Brain Lang ; 121(3): 185-93, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22429907

ABSTRACT

Confrontation naming tasks assess cognitive processes involved in the main stage of word production. However, in fMRI, the occurrence of movement artifacts necessitates the use of covert paradigms, which has limited clinical applications. Thus, we explored the feasibility of adopting multichannel functional near-infrared spectroscopy (fNIRS) to assess language function during covert and overt naming tasks. Thirty right-handed, healthy adult volunteers underwent both naming tasks and cortical hemodynamics measurement using fNIRS. The overt naming task recruited the classical left-hemisphere language areas (left inferior frontal, superior and middle temporal, precentral, and postcentral gyri) exemplified by an increase in the oxy-Hb signal. Activations were bilateral in the middle and superior temporal gyri. However, the covert naming task recruited activation only in the left-middle temporal gyrus. The activation patterns reflected a major part of the functional network for overt word production, suggesting the clinical importance of fNIRS in the diagnosis of aphasic patients.


Subject(s)
Brain Mapping/methods , Cerebral Cortex/physiology , Speech/physiology , Adult , Cerebral Cortex/blood supply , Female , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted , Spectroscopy, Near-Infrared , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...