Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(33): 21883-21896, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37566409

ABSTRACT

Ethanol (C2H5OH) is one of the most common alcohol molecules observed in various space media (molecular clouds, star formation regions, and, highly likely, interstellar ices), where it is exposed to light and ionizing radiation, leading to more complex organic molecules and eventually to the biologically important species. To better understand the radiation-induced evolution of ethanol molecules in icy media, we have examined the transformations of isolated C2H5OH and C2D5OH under the action of X-rays and vacuum ultraviolet (VUV) radiation in solid inert matrices (Ne, Ar, Kr, and Xe) at 4.4 K using Fourier transform infrared (FTIR) spectroscopy. The results obtained with X-ray irradiation demonstrate the formation of a variety of radiolysis products corresponding to dehydrogenation (CH3CHOH˙, CH3CHO, CH2CHOH, CH3CO˙, H2CCO-H2, H2CCO, HCCO˙, CCO) and C-C bond rupture (H2CO, HCO˙, CO, CH4, and CH3˙). The absorptions of the CH3CHOH˙ radical related to the CCO stretching (the bands at 1249.1, 1247.0, 1246.2, and 1245.1 cm-1, in Ne, Ar, Kr, and Xe, respectively) were first tentatively characterized on the basis of comparison with available computational data. In addition, the C2H2⋯H2O complex, which corresponds to dehydrogenation, was found followed by C-O bond cleavage. The results were confirmed by experiments with isotopic substitution. It was found that dehydrogenation strongly predominated in a xenon matrix, while skeleton bond rupture is more feasible in neon and argon. The matrix effect was attributed to a significant role of "hot" reaction channels in neon and argon, which are efficiently quenched due to relaxation in more polarizable xenon. The VUV photolysis (185 nm) in Ar and Xe matrices yields a similar set of products, except for CH3CHOH˙ and CH2CHOH, which were not found (the nonobservation of the former species may be explained by its efficient secondary photolysis). The plausible mechanisms of product formation and astrochemical implications of the results are discussed.

2.
Phys Chem Chem Phys ; 25(6): 4624-4634, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36723210

ABSTRACT

This paper addresses the basic question of the impact of a chemically inert environment on the radiation-induced transformations of isolated organic molecules in icy media at cryogenic temperatures with possible implications for astrochemical issues. The radicals produced by X-ray irradiation of isolated ethanol molecules (C2H5OH and CH3CD2OH) in solid argon and xenon matrices at 7 K were characterized by electron paramagnetic resonance (EPR) spectroscopy. It was shown that methyl (CH3˙) and formyl (HCO˙) radicals resulting from the C-C bond cleavage were mainly produced in the case of solid argon, which was attributed to the significant role of "hot" ionic fragmentation and inefficient energy dissipation to medium. In contrast, irradiation in xenon results in the predominant formation of α-hydroxyethyl radicals (CH3˙CHOH or CH3˙CDOH(D) in the cases of C2H5OH and CH3CD2OH, respectively). Remarkably, the experiments with selectively deuterated ethanol provide strong indirect evidence for the primary formation of ethoxy (CH3CD2O˙) radicals due to O-H bond cleavage, which convert to the α-hydroxyethyl radicals due to isomerization occurring at 7 K. The α-hydroxyethyl radicals adopt a specific rigid conformation with a non-rotating methyl group at low temperatures, which is an unusual effect for neutral CH3˙CHX species, and exhibit free rotation in solid xenon only at ca. 65 K.

3.
Phys Chem Chem Phys ; 24(1): 419-432, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34897322

ABSTRACT

Acetaldehyde is one of the key small organic molecules involved in astrochemical and atmospheric processes occurring under the action of ionizing and UV radiation. While the UV photochemistry of acetaldehyde is well studied, little is known about the mechanism of processes induced by high-energy radiation. This paper reports the first systematic study on the chemical transformations of CH3CHO molecules resulting from X-ray irradiation under the conditions of matrix isolation in different solid noble gases (Ne, Ar, Kr, and Xe) at 5 K. CO, CH4, H2CCO, H2CCO-H2, C2H2⋯H2O, CH2CHOH, CH3CO˙, CH3˙, HCCO˙, and CCO were identified as the main radiolysis products. The dominant pathway of acetaldehyde degradation involves C-C bond cleavage leading to the formation of carbon monoxide and methane. The second important channel is dehydrogenation resulting in the formation of ketene, a potentially highly reactive species. It was found that the matrix significantly affected both the decomposition efficiency and distribution of the reaction channels. Based on these observations, it was suggested that the formation of the methyl radical as well as vinyl alcohol and the C2H2⋯H2O complex presumably included a significant contribution of ionic pathways. The decomposition of acetyl radicals under photolysis with visible light leading to the CH3˙-CO radical-molecule pair was observed in all matrices, while the recovery of CH3CO˙ in the dark at 5 K was found only in Xe. This finding represents a prominent example of matrix-dependent chemical dynamics (probably, involving tunnelling), which deserves further theoretical studies. Probable mechanisms of acetaldehyde radiolysis and their implications for astrochemistry, atmospheric chemistry and low-temperature chemistry are discussed.

4.
J Phys Chem A ; 123(25): 5199-5205, 2019 Jun 27.
Article in English | MEDLINE | ID: mdl-31150245

ABSTRACT

The radiation resistance of aromatic compounds is one of the key concepts of basic and applied radiation chemistry in condensed phases. Usually, it is attributed to the intrinsic radiation stability of the benzene ring. In this work, we have demonstrated for the first time that the isolated benzene molecules undergo rather efficient radiation-induced degradation in rigid inert media at cryogenic temperatures (comparable to that of aliphatic hydrocarbons), and their stability is essentially determined by the intermolecular relaxation correlating with matrix polarizability. The principal primary products of benzene radiolysis in matrices are phenyl radicals and fulvene. The matrix environment strongly affects the proportion of these species because of external heavy atom effect on the intersystem crossing, which may trigger further reaction pathways. The obtained results may have important implications for the prediction of radiation stability of complex organic systems and polymers. Furthermore, they may contribute to a better understanding of the radiation-induced evolution of aromatic species in cold interstellar media.

SELECTION OF CITATIONS
SEARCH DETAIL
...