Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Mol Mutagen ; 55(6): 492-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24599777

ABSTRACT

Ethyl methanesulfonate (EMS) was evaluated as part of the validation effort for the rat Pig-a mutation assay and compared with other well-established in vivo genotoxicity endpoints. Male Sprague-Dawley (SD) rats were given a daily dose of 0, 6.25, 12.5, 25, 50, or 100 mg/kg/day EMS for 28 days, and evaluated for a variety of genotoxicity endpoints in peripheral blood, liver, and colon. Blood was sampled pre-dose (Day 1) and at various time points up to Day 105. Pig-a mutant frequencies were determined in total red blood cells (RBCs) and reticulocytes (RETs) as RBC(CD59-) and RET(CD59-) frequencies. The first statistically significant increases in mutant frequencies were seen in RETs on Day 15 and in RBCs on Day 29 with the maximum RET(CD59-) on Day 29 and of RBC(CD59-) on Day 55. The lowest dose producing a statistically significant increase of RET(CD59-) was 12.5 mg/kg on Day 55 and 25 mg/kg for RBC(CD59-) on Day 55. EMS also induced significant increases in % micronucleated RETs (MN-RETs) in peripheral blood on Days 3, 15, and 28. No statistically significant increases in micronuclei were seen in liver or colon. Results from the in vivo Comet assay on Day 29 showed generally weak increases in DNA damage in all tissues evaluated with little evidence for accumulation of damage seen over time. The results with EMS indicate that the assessment of RBC(CD59-) and/or RET(CD59-) in the Pig-a assay could be a useful and sensitive endpoint for a repeat dose protocol and complements other genotoxicity endpoints.


Subject(s)
Comet Assay/methods , Ethyl Methanesulfonate/toxicity , Membrane Proteins/genetics , Micronucleus Tests/methods , Animals , Colon/cytology , Colon/drug effects , DNA Damage/drug effects , Dose-Response Relationship, Drug , Endpoint Determination , Erythrocytes/drug effects , Liver/cytology , Liver/drug effects , Male , Membrane Proteins/drug effects , Mutation Rate , Rats , Rats, Sprague-Dawley , Reticulocytes/drug effects
2.
Mutat Res ; 746(1): 29-34, 2012 Jul 04.
Article in English | MEDLINE | ID: mdl-22445949

ABSTRACT

The Organization for Economic Co-operation and Development (OECD) has recently adopted Test Guideline 487 (TG487) for conducting the in vitro micronucleus (MNvit) assay. The purpose of this study is to evaluate and validate treatment conditions for the use of p53 competent TK6 human lymphoblastoid cells in a TG487 compliant MNvit assay. The ten reference compounds suggested in TG487 (mitomycin C, cytosine arabinoside, cyclophosphamide, benzo-a-pyrene, vinblastine sulphate, colchicine, sodium chloride, nalidixic acid and di(2-ethylhexyl)phthalate and pyrene) and noscapine hydrochloride were chosen for this study. In order to optimize the micronucleus response after treatment with some positive substances, we extended the recovery time after pulse treatment from 2 cell cycles recommended in TG487 to 3 cell cycles for untreated cells (40h). Each compound was tested in at least one of four exposure conditions: a 4h exposure followed by a 40h recovery, a 4h exposure followed by a 24h recovery, a 4h exposure in the presence of an exogenous metabolic activation system followed by a 40h recovery period, and a 27h continuous direct treatment. Results show that the direct acting clastogens, clastogens requiring metabolic activation and aneugens caused a robust increase in micronuclei in at least one test condition whereas the negative compounds did not induce micronuclei. The negative control cultures exhibited reproducibly low and consistent micronucleus frequencies ranging from 0.4 to 1.8% (0.8±0.3% average and standard deviation). Furthermore, extending the recovery period from 24h to 40h produced a 2-fold higher micronucleus frequency after a 4h pulse treatment with mitomycin C. In summary, the protocol described in this study in TK6 cells produced the expected result with model compounds and should be suitable for performing the MNvit assay in accordance with guideline TG487.


Subject(s)
Antineoplastic Agents/toxicity , Micronucleus Tests/methods , Mutagens/toxicity , Aneugens/toxicity , Biotransformation , Cell Line , Guidelines as Topic , Humans
3.
Environ Mol Mutagen ; 49(4): 318-27, 2008 May.
Article in English | MEDLINE | ID: mdl-18366097

ABSTRACT

Previously, this laboratory reported on the development of a flow cytometry-based method that automates the assessment of the mitotic index (MI) and numerical chromosome changes in chemically treated cultures of human lymphocytes [Muehlbauer PA and Schuler MJ, 2003, 2005]. With this method, testing design can easily include numerous well-spaced doses to better define the shape of MI dose response curves. In addition, the hypodiploid, hyperdiploid, and polyploid mitotic populations are available simultaneously to determine the biological relevance of polyploidy effects during the conduct of the assay. The current work describes the integration of this flow cytometry-based method into the routine conduct of good laboratory practice structural chromosome aberration assays in vitro, and discusses improvements in evaluating cytotoxicity and polyploidy endpoints. Additional methods for simultaneous assessment of cell death (sub-G1 DNA) are shown in combination with the MI to provide a more complete evaluation of cytotoxic conditions. A total of 30 pharmaceutical compounds were assayed in compliance with Organization for Economic Cooperation and Development and International Conference on Harmonization guidelines. The inclusion of numerous well-spaced doses improved high dose selection and resulted in fewer high dose artifacts. Only 1 compound in 30 produced a positive response in structural aberrations. In comparison, polyploidy induction was observed in 22 of 30 (73%) compounds, with no apparent increases in numerical chromosomal aberrations. These studies show that flow cytometry-based methods can be used to better characterize cytotoxicity dose-response relationships and improve the detection of aneugens.


Subject(s)
Aneugens/toxicity , Chromosome Aberrations/chemically induced , Drug-Related Side Effects and Adverse Reactions , Flow Cytometry , Mitotic Index , Cells, Cultured , Dose-Response Relationship, Drug , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Male , Mutagenicity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...