Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Compr Rev Food Sci Food Saf ; 21(1): 371-415, 2022 01.
Article in English | MEDLINE | ID: mdl-34941013

ABSTRACT

Every year, agrifood activities generate a large amount of plant byproducts, which have a low economical value. However, the valorization of these byproducts can contribute to increasing the intake of dietary fibers and reducing the environmental pollution. This review presents an overview of a wide variety of agricultural wastes applied in the formulation of different food products and sustainable packaging. In general, the incorporation of fibers into bakery, meat, and dairy products was successful, especially at a level of 10% or less. Fibers from a variety of crops improved the consistency, texture, and stability of sauce formulations without affecting sensory quality. In addition, fiber fortification (0.01-6.4%) presented considerable advantages in terms of rheology, texture, melting behavior, and fat replacement of ice cream, but in some cases had a negative impact on color and mouthfeel. In the case of beverages, promising effects on texture, viscosity, stability, and appetite control were obtained by the addition of soluble dietary fibers from grains and fruits with small particle size. Biocomposites used in packaging benefited from reinforcing effects of various plant fiber sources, but the extent of modification depended on the matrix type, fiber pretreatment, and concentration. The information synthesized in this contribution can be used as a tool to screen and select the most promising fiber source, fiber concentration, and pretreatment for specific food applications and sustainable packaging.


Subject(s)
Dairy Products , Dietary Fiber , Beverages , Dietary Fiber/analysis , Fruit/chemistry , Viscosity
2.
PLoS One ; 10(9): e0138530, 2015.
Article in English | MEDLINE | ID: mdl-26401655

ABSTRACT

BACKGROUND: Iodine deficiency has important health and development consequences and the introduction of iodized salt as national programs has been a great public health success in the past decades. To render national salt iodization programs sustainable and ensure adequate iodization levels, simple methods to quantitatively assess whether salt is adequately iodized are required. Several methods claim to be simple and reliable, and are available on the market or are in development. OBJECTIVE: This work has validated the currently available quantitative rapid test kits (quantRTK) in a comparative manner for both their laboratory performance and ease of use in field settings. METHODS: Laboratory performance parameters (linearity, detection and quantification limit, intra- and inter-assay imprecision) were conducted on 5 quantRTK. We assessed inter-operator imprecision using salt of different quality along with the comparison of 59 salt samples from across the globe; measurements were made both in a laboratory and a field setting by technicians and non-technicians. Results from the quantRTK were compared against iodometric titration for validity. An 'ease-of-use' rating system was developed to identify the most suitable quantRTK for a given task. RESULTS: Most of the devices showed acceptable laboratory performance, but for some of the devices, use by non-technicians revealed poorer performance when working in a routine manner. Of the quantRTK tested, the iCheck® and I-Reader® showed most consistent performance and ease of use, and a newly developed paper-based method (saltPAD) holds promise if further developed. CONCLUSIONS: User- and field-friendly devices are now available and the most appropriate quantRTK can be selected depending on the number of samples and the budget available.


Subject(s)
Food Analysis/methods , Food Analysis/standards , Iodine/analysis , Sodium Chloride, Dietary/analysis , Humans , Reference Values , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...