Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 1067418, 2022.
Article in English | MEDLINE | ID: mdl-36814537

ABSTRACT

Introduction: Shoulder pain is a common secondary impairment for people living with ALS (PALS). Decreased range of motion (ROM) from weakness can lead to shoulder pathology, which can result in debilitating pain. Shoulder pain may limit PALS from participating in activities of daily living and may have a negative impact on their quality of life. This case series explores the efficacy of glenohumeral joint injections for the management of shoulder pain due to adhesive capsulitis in PALS. Methods: People living with ALS and shoulder pain were referred to sports medicine-certified physiatrists for diagnostic evaluation and management. They completed the Revised ALS Functional Rating Scale and a questionnaire asking about their pain levels and how it impacts sleep, function, and quality of life at baseline pre-injection, 1-week post-injection, 1 month post-injection, and 3 months post-injection. Results: We present five cases of PALS who were diagnosed with adhesive capsulitis and underwent glenohumeral joint injections. Though only one PALS reported complete symptom resolution, all had at least partial symptomatic improvement during the observation period. No complications were observed. Conclusions: People living with ALS require a comprehensive plan to manage shoulder pain. Glenohumeral joint injections are safe and effective for adhesive capsulitis in PALS, but alone may not completely resolve shoulder pain. Additional therapies to improve ROM and reduce pain should be considered.

2.
J Magn Reson Imaging ; 53(2): 599-610, 2021 02.
Article in English | MEDLINE | ID: mdl-32860322

ABSTRACT

BACKGROUND: Patients with deep brain stimulation (DBS) implants have limited access to MRI due to safety concerns associated with RF-induced heating. Currently, MRI in these patients is allowed in 1.5T horizontal bore scanners utilizing pulse sequences with reduced power. However, the use of 3T MRI in such patients is increasingly reported based on limited safety assessments. Here we present the results of comprehensive RF heating measurements for two commercially available DBS systems during MRI at 1.5T and 3T. PURPOSE: To assess the effect of imaging landmark, DBS lead configuration, and patient's body composition on RF heating of DBS leads during MRI at 1.5T and 3T. STUDY TYPE: Phantom and ex vivo study. POPULATION/SUBJECTS/PHANTOM/SPECIMEN/ANIMAL MODEL: Gel phantoms and cadaver brain. FIELD STRENGTH/SEQUENCE: 1.5T and 3T, T1 -weighted turbo spin echo. ASSESSMENT: RF heating was measured at the tips of DBS leads implanted in brain-mimicking gel. Image artifact was assessed in a cadaver brain implanted with an isolated DBS lead. STATISTICAL TESTS: Descriptive. RESULTS: We observed substantial fluctuation in RF heating, mainly affected by phantom composition and DBS lead configuration, ranging from 0.14°C to 23.73°C at 1.5T, and from 0.10°C to 7.39°C at 3T. The presence of subcutaneous fat substantially altered RF heating at the electrode tips (3.06°C < ∆T < 19.05° C). Introducing concentric loops in the extracranial portion of the lead at the surgical burr hole reduced RF heating by up to 89% at 1.5T and up to 98% at 3T compared to worst-case heating scenarios. DATA CONCLUSION: Device configuration and patient's body composition substantially altered the RF heating of DBS leads during MRI. Interestingly, certain lead trajectories consistently reduced RF heating and image artifact. Level of Evidence 1 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2021;53:599-610.


Subject(s)
Deep Brain Stimulation , Heating , Artifacts , Body Composition , Humans , Magnetic Resonance Imaging , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...