Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cancer Discov ; 13(10): 2180-2191, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37704212

ABSTRACT

Breast cancer occurring during pregnancy (PrBC) and postpartum (PPBC) is usually diagnosed at more advanced stages compared with other breast cancer, worsening its prognosis. PPBC is particularly aggressive, with increased metastatic risk and mortality. Thus, effective screening methods to detect early PrBC and PPBC are needed. We report for the first time that cell-free tumor DNA (ctDNA) is present in breast milk (BM) collected from patients with breast cancer. Analysis of ctDNA from BM detects tumor variants in 87% of the cases by droplet digital PCR, while variants remain undetected in 92% of matched plasma samples. Retrospective next-generation sequencing analysis in BM ctDNA recapitulates tumor variants, with an overall clinical sensitivity of 71.4% and specificity of 100%. In two cases, ctDNA was detectable in BM collected 18 and 6 months prior to standard diagnosis. Our results open up the potential use of BM as a new source for liquid biopsy for PPBC detection. SIGNIFICANCE: For the first time, we show that BM obtained from patients with breast cancer carries ctDNA, surpassing plasma-based liquid biopsy for detection and molecular profiling of early-stage breast cancer, even prior to diagnosis by image. See related commentary by Cunningham and Turner, p. 2125. This article is featured in Selected Articles from This Issue, p. 2109.


Subject(s)
Breast Neoplasms , Circulating Tumor DNA , Female , Humans , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Retrospective Studies , Milk, Human , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Mutation
2.
Mol Oncol ; 17(5): 779-791, 2023 05.
Article in English | MEDLINE | ID: mdl-36852704

ABSTRACT

Immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 axis are the main therapeutic option for patients with advanced non-small cell lung cancer (NSCLC) without a druggable oncogenic alteration. Nevertheless, only a portion of patients benefit from this type of treatment. Here, we assessed the value of shallow whole-genome sequencing (sWGS) on plasma samples to monitor ICI benefit. We applied sWGS on cell-free DNA (cfDNA) extracted from plasma samples of 45 patients with metastatic NSCLC treated with ICIs. Over 150 samples were obtained before ICI treatment initiation and at several time points throughout treatment. From sWGS data, we computed the tumor fraction (TFx) and somatic copy number alteration (SCNA) burden and associated them with ICI benefit and clinical features. TFx at baseline correlated with metastatic lesions at the bone and the liver, and high TFx (≥ 10%) associated with ICI benefit. Moreover, its assessment in on-treatment samples was able to better predict clinical efficacy, regardless of the TFx levels at baseline. Finally, for a subset of patients for whom SCNA burden could be computed, increased burden correlated with diminished benefit following ICI treatment. Thus, our data indicate that the analysis of cfDNA by sWGS enables the monitoring of two potential biomarkers-TFx and SCNA burden-of ICI benefit in a cost-effective manner, facilitating multiple serial-sample analyses. Larger cohorts will be needed to establish its clinical potential.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Circulating Tumor DNA , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Circulating Tumor DNA/genetics , Biomarkers, Tumor/genetics , Treatment Outcome , B7-H1 Antigen
3.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613564

ABSTRACT

The search for immunotherapy biomarkers in Microsatellite Instability High/Deficient Mismatch Repair system (MSI-H/dMMR) metastatic colorectal cancer (mCRC) is an unmet need. Sixteen patients with mCRC and MSI-H/dMMR (determined by either immunohistochemistry or polymerase chain reaction) treated with PD-1/PD-L1 inhibitors at our institution were included. According to whether the progression-free survival with PD-1/PD-L1 inhibitors was longer than 6 months or shorter, patients were clustered into the IT-responder group (n: 9 patients) or IT-resistant group (n: 7 patients), respectively. In order to evaluate determinants of benefit with PD-1/PD-L1 inhibitors, we performed multimodal analysis including genomics (through NGS panel tumour-only with 431 genes) and the immune microenvironment (using CD3, CD8, FOXP3 and PD-L1 antibodies). The following mutations were more frequent in IT-resistant compared with IT-responder groups: B2M (4/7 versus 2/9), CTNNB1 (2/7 versus 0/9), and biallelic PTEN (3/7 versus 1/9). Biallelic ARID1A mutations were found exclusively in the IT-responder group (4/9 patients). Tumour mutational burden did not correlate with immunotherapy benefit, neither the rate of indels in homopolymeric regions. Of note, biallelic ARID1A mutated tumours had the highest immune infiltration and PD-L1 scores, contrary to tumours with CTNNB1 mutation. Immune microenvironment analysis showed higher densities of different T cell subpopulations and PD-L1 expression in IT-responders. Misdiagnosis of MSI-H/dMMR inferred by discordances between immunohistochemistry and polymerase chain reaction was only found in the IT-resistant population (3/7 patients). Biallelic ARID1A mutations and Wnt signalling activation through CTNNB1 mutation were associated with high and low T cell immune infiltrates, respectively, and deserve special attention as determinants of response to PD-1/PD-L1 inhibitors. The non-MSI-H phenotype in dMMR is associated with poor benefit to immunotherapy. Our results suggest that mechanisms of resistance to immunotherapy are multi-factorial.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Humans , B7-H1 Antigen/genetics , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , DNA Mismatch Repair , Programmed Cell Death 1 Receptor/genetics , Colonic Neoplasms/genetics , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Microsatellite Repeats , Microsatellite Instability , Immunotherapy , Tumor Microenvironment/genetics
4.
Br J Cancer ; 125(11): 1561-1569, 2021 11.
Article in English | MEDLINE | ID: mdl-34599295

ABSTRACT

BACKGROUND: Tumour heterogeneity impacts the efficacy of metastatic cancer treatment even if actionable mutations are identified. Clinicians need to understand if assessing one lesion provides reliable information to drive a therapeutic decision in non-small-cell lung cancer (NSCLC) patients. METHODS: We analysed inter-tumour heterogeneity from five autopsied individuals with NSCLC-harbouring mutations in the epidermal growth factor receptor (EGFR), treated with EGFR tyrosine kinase inhibitors (TKIs). Through a comprehensive next-generation sequencing (NGS) oncopanel, and an EGFR panel for digital droplet PCR (ddPCR), we compared metastases within individuals, longitudinal biopsies from the same lesions and, whenever possible, the primary naive tumour. RESULTS: Analysis of 22 necropsies from five patients revealed homogeneity in pathogenic mutations and TKI-resistance mechanisms within each patient in four of them. In-depth analysis by whole-exome sequencing from patient 1 confirmed homogeneity in clonal mutations, but heterogeneity in passenger subclonal alterations. Different resistance mechanisms were detected depending on the patient and line of treatment. Three patients treated with a c-MET inhibitor in combination with TKI lost MET amplification upon progression. CONCLUSION: At a given point and under selective TKI pressure, a single metastasis biopsy in disseminated tumours from EGFR-mutated NSCLC patients could provide a reasonable assessment of actionable alterations useful for therapeutic decisions.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Protein Kinase Inhibitors/therapeutic use , Carcinoma, Non-Small-Cell Lung/enzymology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology
5.
Front Oncol ; 11: 710596, 2021.
Article in English | MEDLINE | ID: mdl-34616675

ABSTRACT

The immune checkpoint inhibitor atezolizumab is approved for PD-L1-positive triple-negative breast cancer (TNBC). However, no activity of atezolizumab in PD-L1-negative TNBC has been reported to date. Here, we present the case study of a woman with TNBC with low tumor infiltrating lymphocytes and PD-L1-negative disease, which achieved a significant response to atezolizumab monotherapy and durable response after the combination of atezolizumab and nab-paclitaxel. The comprehensive genomic analysis that we performed in her tumor and plasma samples revealed high tumor mutational burden (TMB), presence of the APOBEC genetic signatures, high expression of the tumor inflammation signature, and a HER2-enriched subtype by the PAM50 assay. Some of these biomarkers have been shown to independently predict response to immunotherapy in other tumors and may explain the durable response in our patient. Our work warrants further translational studies to identify biomarkers of response to immune checkpoint inhibitors in TNBC beyond PD-L1 expression and to better select patients that will benefit from immunotherapy.

6.
Nat Commun ; 11(1): 4338, 2020 08 28.
Article in English | MEDLINE | ID: mdl-32859893

ABSTRACT

Reversible phosphorylation of Pol II and accessory factors helps order the transcription cycle. Here, we define two kinase-phosphatase switches that operate at different points in human transcription. Cdk9/cyclin T1 (P-TEFb) catalyzes inhibitory phosphorylation of PP1 and PP4 complexes that localize to 3' and 5' ends of genes, respectively, and have overlapping but distinct specificities for Cdk9-dependent phosphorylations of Spt5, a factor instrumental in promoter-proximal pausing and elongation-rate control. PP1 dephosphorylates an Spt5 carboxy-terminal repeat (CTR), but not Spt5-Ser666, a site between Kyrpides-Ouzounis-Woese (KOW) motifs 4 and 5, whereas PP4 can target both sites. In vivo, Spt5-CTR phosphorylation decreases as transcription complexes pass the cleavage and polyadenylation signal (CPS) and increases upon PP1 depletion, consistent with a PP1 function in termination first uncovered in yeast. Depletion of PP4-complex subunits increases phosphorylation of both Ser666 and the CTR, and promotes redistribution of promoter-proximally paused Pol II into gene bodies. These results suggest that switches comprising Cdk9 and either PP4 or PP1 govern pause release and the elongation-termination transition, respectively.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , RNA Polymerase II/metabolism , Transcription, Genetic/physiology , Cyclin-Dependent Kinase 9/antagonists & inhibitors , HCT116 Cells , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphorylation , Positive Transcriptional Elongation Factor B/metabolism , RNA Interference , RNA Polymerase II/genetics , Receptors, Neuropeptide Y/metabolism , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
7.
Nucleic Acids Res ; 48(13): 7154-7168, 2020 07 27.
Article in English | MEDLINE | ID: mdl-32496538

ABSTRACT

Mono-ubiquitylation of histone H2B (H2Bub1) and phosphorylation of elongation factor Spt5 by cyclin-dependent kinase 9 (Cdk9) occur during transcription by RNA polymerase II (RNAPII), and are mutually dependent in fission yeast. It remained unclear whether Cdk9 and H2Bub1 cooperate to regulate the expression of individual genes. Here, we show that Cdk9 inhibition or H2Bub1 loss induces intragenic antisense transcription of ∼10% of fission yeast genes, with each perturbation affecting largely distinct subsets; ablation of both pathways de-represses antisense transcription of over half the genome. H2Bub1 and phospho-Spt5 have similar genome-wide distributions; both modifications are enriched, and directly proportional to each other, in coding regions, and decrease abruptly around the cleavage and polyadenylation signal (CPS). Cdk9-dependence of antisense suppression at specific genes correlates with high H2Bub1 occupancy, and with promoter-proximal RNAPII pausing. Genetic interactions link Cdk9, H2Bub1 and the histone deacetylase Clr6-CII, while combined Cdk9 inhibition and H2Bub1 loss impair Clr6-CII recruitment to chromatin and lead to decreased occupancy and increased acetylation of histones within gene coding regions. These results uncover novel interactions between co-transcriptional histone modification pathways, which link regulation of RNAPII transcription elongation to suppression of aberrant initiation.


Subject(s)
Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase 9/metabolism , Histones/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Transcription Elongation, Genetic , Phosphorylation , Transcriptional Elongation Factors/metabolism , Ubiquitination
8.
BMC Cancer ; 20(1): 99, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024476

ABSTRACT

BACKGROUND: Gastrointestinal stromal tumor (GIST) initiation and evolution is commonly framed by KIT/PDGFRA oncogenic activation, and in later stages by the polyclonal expansion of resistant subpopulations harboring KIT secondary mutations after the onset of imatinib resistance. Thus, circulating tumor (ct)DNA determination is expected to be an informative non-invasive dynamic biomarker in GIST patients. METHODS: We performed amplicon-based next-generation sequencing (NGS) across 60 clinically relevant genes in 37 plasma samples from 18 GIST patients collected prospectively. ctDNA alterations were compared with NGS of matched tumor tissue samples (obtained either simultaneously or at the time of diagnosis) and cross-validated with droplet digital PCR (ddPCR). RESULTS: We were able to identify cfDNA mutations in five out of 18 patients had detectable in at least one timepoint. Overall, NGS sensitivity for detection of cell-free (cf)DNA mutations in plasma was 28.6%, showing high concordance with ddPCR confirmation. We found that GIST had relatively low ctDNA shedding, and mutations were at low allele frequencies. ctDNA was detected only in GIST patients with advanced disease after imatinib failure, predicting tumor dynamics in serial monitoring. KIT secondary mutations were the only mechanism of resistance found across 10 imatinib-resistant GIST patients progressing to sunitinib or regorafenib. CONCLUSIONS: ctDNA evaluation with amplicon-based NGS detects KIT primary and secondary mutations in metastatic GIST patients, particularly after imatinib progression. GIST exhibits low ctDNA shedding, but ctDNA monitoring, when positive, reflects tumor dynamics.


Subject(s)
Biomarkers, Tumor , Cell-Free Nucleic Acids , Circulating Tumor DNA , Gastrointestinal Stromal Tumors/genetics , Adult , Aged , Exons , Female , Gastrointestinal Stromal Tumors/blood , Gastrointestinal Stromal Tumors/diagnosis , Gastrointestinal Stromal Tumors/drug therapy , Genotype , High-Throughput Nucleotide Sequencing , Humans , Liquid Biopsy , Male , Middle Aged , Molecular Targeted Therapy , Mutation , Neoplasm Metastasis , Polymerase Chain Reaction , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Tumor Burden
9.
Genetics ; 213(1): 161-172, 2019 09.
Article in English | MEDLINE | ID: mdl-31345994

ABSTRACT

Histone H2B monoubiquitylation (H2Bub1) is tightly linked to RNA polymerase II transcription elongation, and is also directly implicated in DNA replication and repair. Loss of H2Bub1 is associated with defects in cell cycle progression, but how these are related to its various functions, and the underlying mechanisms involved, is not understood. Here we describe a role for H2Bub1 in the regulation of replication-dependent histone genes in the fission yeast Schizosaccharomyces pombe H2Bub1 activates histone genes indirectly by suppressing antisense transcription of ams2+ -a gene encoding a GATA-type transcription factor that activates histone genes and is required for assembly of centromeric chromatin. Mutants lacking the ubiquitylation site in H2B or the H2B-specific E3 ubiquitin ligase Brl2 had elevated levels of ams2+ antisense transcripts and reduced Ams2 protein levels. These defects were reversed upon inhibition of Cdk9-an ortholog of the kinase component of positive transcription elongation factor b (P-TEFb)-indicating that they likely resulted from aberrant transcription elongation. Reduced Cdk9 activity also partially rescued chromosome segregation phenotypes of H2Bub1 mutants. In a genome-wide analysis, loss of H2Bub1 led to increased antisense transcripts at over 500 protein-coding genes in H2Bub1 mutants; for a subset of these, including several genes involved in chromosome segregation and chromatin assembly, antisense derepression was Cdk9-dependent. Our results highlight antisense suppression as a key feature of cell cycle-dependent gene regulation by H2Bub1, and suggest that aberrant transcription elongation may underlie the effects of H2Bub1 loss on cell cycle progression.


Subject(s)
GATA Transcription Factors/genetics , Gene Expression Regulation, Fungal , Histones/metabolism , RNA, Antisense/genetics , Schizosaccharomyces pombe Proteins/genetics , Ubiquitination , Chromosome Segregation , Cyclin-Dependent Kinase 9/genetics , Cyclin-Dependent Kinase 9/metabolism , GATA Transcription Factors/metabolism , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
10.
Nat Genet ; 50(10): 1452-1462, 2018 10.
Article in English | MEDLINE | ID: mdl-30224650

ABSTRACT

In embryonic stem cells (ESCs), developmental gene promoters are characterized by their bivalent chromatin state, with simultaneous modification by MLL2 and Polycomb complexes. Although essential for embryogenesis, bivalency is functionally not well understood. Here, we show that MLL2 plays a central role in ESC genome organization. We generate a catalog of bona fide bivalent genes in ESCs and demonstrate that loss of MLL2 leads to increased Polycomb occupancy. Consequently, promoters lose accessibility, long-range interactions are redistributed, and ESCs fail to differentiate. We pose that bivalency balances accessibility and long-range connectivity of promoters, allowing developmental gene expression to be properly modulated.


Subject(s)
Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Histone-Lysine N-Methyltransferase/physiology , Mouse Embryonic Stem Cells/physiology , Myeloid-Lymphoid Leukemia Protein/physiology , Promoter Regions, Genetic , Animals , Cells, Cultured , Chromatin/chemistry , Chromatin Assembly and Disassembly/genetics , Drosophila , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Histone-Lysine N-Methyltransferase/genetics , Mice , Myeloid-Lymphoid Leukemia Protein/genetics , Polycomb-Group Proteins/metabolism , Protein Binding/genetics
11.
Nature ; 558(7710): 460-464, 2018 06.
Article in English | MEDLINE | ID: mdl-29899453

ABSTRACT

The end of the RNA polymerase II (Pol II) transcription cycle is strictly regulated to prevent interference between neighbouring genes and to safeguard transcriptome integrity 1 . The accumulation of Pol II downstream of the cleavage and polyadenylation signal can facilitate the recruitment of factors involved in mRNA 3'-end formation and termination 2 , but how this sequence is initiated remains unclear. In a chemical-genetic screen, human protein phosphatase 1 (PP1) isoforms were identified as substrates of positive transcription elongation factor b (P-TEFb), also known as the cyclin-dependent kinase 9 (Cdk9)-cyclin T1 (CycT1) complex 3 . Here we show that Cdk9 and PP1 govern phosphorylation of the conserved elongation factor Spt5 in the fission yeast Schizosaccharomyces pombe. Cdk9 phosphorylates both Spt5 and a negative regulatory site on the PP1 isoform Dis2 4 . Sites targeted by Cdk9 in the Spt5 carboxy-terminal domain can be dephosphorylated by Dis2 in vitro, and dis2 mutations retard Spt5 dephosphorylation after inhibition of Cdk9 in vivo. Chromatin immunoprecipitation and sequencing analysis indicates that Spt5 is dephosphorylated as transcription complexes traverse the cleavage and polyadenylation signal, concomitant with the accumulation of Pol II phosphorylated at residue Ser2 of the carboxy-terminal domain consensus heptad repeat 5 . A conditionally lethal Dis2-inactivating mutation attenuates the drop in Spt5 phosphorylation on chromatin, promotes transcription beyond the normal termination zone (as detected by precision run-on transcription and sequencing 6 ) and is genetically suppressed by the ablation of Cdk9 target sites in Spt5. These results suggest that the transition of Pol II from elongation to termination coincides with a Dis2-dependent reversal of Cdk9 signalling-a switch that is analogous to a Cdk1-PP1 circuit that controls mitotic progression 4 .


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Phosphoprotein Phosphatases/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Transcription Elongation, Genetic , Transcription Termination, Genetic , Amino Acid Sequence , Cyclin-Dependent Kinase 9/chemistry , Humans , Mitosis , Phosphoprotein Phosphatases/chemistry , Phosphorylation , RNA Polymerase II/chemistry , Schizosaccharomyces/cytology , Schizosaccharomyces pombe Proteins/chemistry , Signal Transduction , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism
12.
Nat Commun ; 9(1): 543, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29416031

ABSTRACT

Post-translational modifications of the transcription elongation complex provide mechanisms to fine-tune gene expression, yet their specific impacts on RNA polymerase II regulation remain difficult to ascertain. Here, in Schizosaccharomyces pombe, we examine the role of Cdk9, and related Mcs6/Cdk7 and Lsk1/Cdk12 kinases, on transcription at base-pair resolution with Precision Run-On sequencing (PRO-seq). Within a minute of Cdk9 inhibition, phosphorylation of Pol II-associated factor, Spt5 is undetectable. The effects of Cdk9 inhibition are more severe than inhibition of Cdk7 and Cdk12, resulting in a shift of Pol II toward the transcription start site (TSS). A time course of Cdk9 inhibition reveals that early transcribing Pol II can escape promoter-proximal regions, but with a severely reduced elongation rate of only ~400 bp/min. Our results in fission yeast suggest the existence of a conserved global regulatory checkpoint that requires Cdk9 kinase activity.


Subject(s)
Cyclin-Dependent Kinase 9/genetics , Genes, cdc , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/enzymology , Transcriptional Elongation Factors/metabolism , 3' Flanking Region , 5' Flanking Region , Base Pairing , Phosphorylation , Protein Processing, Post-Translational , Schizosaccharomyces pombe Proteins/genetics , Transcription Initiation Site , Transcriptional Elongation Factors/genetics
13.
Nat Commun ; 8(1): 1235, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29089522

ABSTRACT

Polycomb group proteins (PcG) are transcriptional repressors that control cell identity and development. In mammals, five different CBX proteins associate with the core Polycomb repressive complex 1 (PRC1). In mouse embryonic stem cells (ESCs), CBX6 and CBX7 are the most highly expressed CBX family members. CBX7 has been recently characterized, but little is known regarding the function of CBX6. Here, we show that CBX6 is essential for ESC identity. Its depletion destabilizes the pluripotency network and triggers differentiation. Mechanistically, we find that CBX6 is physically and functionally associated to both canonical PRC1 (cPRC1) and non-canonical PRC1 (ncPRC1) complexes. Notably, in contrast to CBX7, CBX6 is recruited to chromatin independently of H3K27me3. Taken together, our findings reveal that CBX6 is an essential component of ESC biology that contributes to the structural and functional complexity of the PRC1 complex.


Subject(s)
Cell Differentiation/genetics , Gene Expression Profiling , Mouse Embryonic Stem Cells/metabolism , Polycomb-Group Proteins/genetics , Animals , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/cytology , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/metabolism , RNA Interference
14.
J Clin Invest ; 127(6): 2365-2377, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28481226

ABSTRACT

Hematopoietic transitions that accompany fetal development, such as erythroid globin chain switching, play important roles in normal physiology and disease development. In the megakaryocyte lineage, human fetal progenitors do not execute the adult morphogenesis program of enlargement, polyploidization, and proplatelet formation. Although these defects decline with gestational stage, they remain sufficiently severe at birth to predispose newborns to thrombocytopenia. These defects may also contribute to inferior platelet recovery after cord blood stem cell transplantation and may underlie inefficient platelet production by megakaryocytes derived from pluripotent stem cells. In this study, comparison of neonatal versus adult human progenitors has identified a blockade in the specialized positive transcription elongation factor b (P-TEFb) activation mechanism that is known to drive adult megakaryocyte morphogenesis. This blockade resulted from neonatal-specific expression of an oncofetal RNA-binding protein, IGF2BP3, which prevented the destabilization of the nuclear RNA 7SK, a process normally associated with adult megakaryocytic P-TEFb activation. Knockdown of IGF2BP3 sufficed to confer both phenotypic and molecular features of adult-type cells on neonatal megakaryocytes. Pharmacologic inhibition of IGF2BP3 expression via bromodomain and extraterminal domain (BET) inhibition also elicited adult features in neonatal megakaryocytes. These results identify IGF2BP3 as a human ontogenic master switch that restricts megakaryocyte development by modulating a lineage-specific P-TEFb activation mechanism, revealing potential strategies toward enhancing platelet production.


Subject(s)
Megakaryocytes/physiology , RNA-Binding Proteins/physiology , Animals , Cell Proliferation , Female , Gene Expression , Gene Expression Regulation, Developmental , HEK293 Cells , Hematopoiesis , Hematopoietic Stem Cells/physiology , Humans , Infant, Newborn , K562 Cells , Mice, Inbred C57BL , Transcriptional Activation
15.
Nature ; 544(7648): 59-64, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28289288

ABSTRACT

The folding of genomic DNA from the beads-on-a-string-like structure of nucleosomes into higher-order assemblies is crucially linked to nuclear processes. Here we calculate 3D structures of entire mammalian genomes using data from a new chromosome conformation capture procedure that allows us to first image and then process single cells. The technique enables genome folding to be examined at a scale of less than 100 kb, and chromosome structures to be validated. The structures of individual topological-associated domains and loops vary substantially from cell to cell. By contrast, A and B compartments, lamina-associated domains and active enhancers and promoters are organized in a consistent way on a genome-wide basis in every cell, suggesting that they could drive chromosome and genome folding. By studying genes regulated by pluripotency factor and nucleosome remodelling deacetylase (NuRD), we illustrate how the determination of single-cell genome structure provides a new approach for investigating biological processes.


Subject(s)
Chromatin Assembly and Disassembly , Genome , Molecular Imaging/methods , Nucleosomes/chemistry , Single-Cell Analysis/methods , Animals , CCCTC-Binding Factor , Cell Cycle Proteins/metabolism , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomes, Mammalian/chemistry , Chromosomes, Mammalian/genetics , Chromosomes, Mammalian/metabolism , DNA/chemistry , DNA/genetics , DNA/metabolism , Enhancer Elements, Genetic , G1 Phase , Gene Expression Regulation , Gene Regulatory Networks , Genome/genetics , Haploidy , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mice , Models, Molecular , Molecular Conformation , Molecular Imaging/standards , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , Nucleosomes/genetics , Nucleosomes/metabolism , Promoter Regions, Genetic , Repressor Proteins/metabolism , Reproducibility of Results , Single-Cell Analysis/standards , Cohesins
16.
Genes Dev ; 30(1): 117-31, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26728557

ABSTRACT

The transcription cycle of RNA polymerase II (Pol II) is regulated at discrete transition points by cyclin-dependent kinases (CDKs). Positive transcription elongation factor b (P-TEFb), a complex of Cdk9 and cyclin T1, promotes release of paused Pol II into elongation, but the precise mechanisms and targets of Cdk9 action remain largely unknown. Here, by a chemical genetic strategy, we identified ∼ 100 putative substrates of human P-TEFb, which were enriched for proteins implicated in transcription and RNA catabolism. Among the RNA processing factors phosphorylated by Cdk9 was the 5'-to-3' "torpedo" exoribonuclease Xrn2, required in transcription termination by Pol II, which we validated as a bona fide P-TEFb substrate in vivo and in vitro. Phosphorylation by Cdk9 or phosphomimetic substitution of its target residue, Thr439, enhanced enzymatic activity of Xrn2 on synthetic substrates in vitro. Conversely, inhibition or depletion of Cdk9 or mutation of Xrn2-Thr439 to a nonphosphorylatable Ala residue caused phenotypes consistent with inefficient termination in human cells: impaired Xrn2 chromatin localization and increased readthrough transcription of endogenous genes. Therefore, in addition to its role in elongation, P-TEFb regulates termination by promoting chromatin recruitment and activation of a cotranscriptional RNA processing enzyme, Xrn2.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Exoribonucleases/genetics , Exoribonucleases/metabolism , Gene Expression Regulation/genetics , Positive Transcriptional Elongation Factor B/metabolism , Chromatin/metabolism , Enzyme Activation/genetics , Genetic Testing , HCT116 Cells , Humans , Phosphorylation , Protein Binding
17.
Biochem Soc Trans ; 41(6): 1660-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24256271

ABSTRACT

CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Gene Expression Regulation, Fungal , Models, Genetic , Schizosaccharomyces/enzymology , Schizosaccharomyces/genetics , Transcription, Genetic , Cell Cycle/genetics , Schizosaccharomyces/cytology
18.
PLoS Genet ; 9(7): e1003647, 2013.
Article in English | MEDLINE | ID: mdl-23874237

ABSTRACT

The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxidative stress survival. The stress transcriptional program, governed by the Sty1-Atf1-Pcr1 pathway, is affected in mutant cells, but not severely. On the contrary, cells lacking Sin3/Elp3 cannot modify the uridine wobble nucleoside of certain tRNAs, and other tRNA modifying activities such as Ctu1-Ctu2 are also essential for normal tolerance to H2O2. In particular, a plasmid over-expressing the tRNA(Lys) UUU complements the stress-related phenotypes of Sin3/Elp3 mutant cells. We have determined that the main H2O2-dependent genes, including those coding for the transcription factors Atf1 and Pcr1, are highly expressed mRNAs containing a biased number of lysine-coding codons AAA versus AAG. Thus, their mRNAs are poorly translated after stress in cells lacking Sin3/Elp3 or Ctu2, whereas a mutated atf1 transcript with AAA-to-AAG lysine codons is efficiently translated in all strain backgrounds. Our study demonstrates that the lack of a functional Elongator complex results in stress phenotypes due to its contribution to tRNA modification and subsequent translation inefficiency of certain stress-induced, highly expressed mRNAs. These results suggest that the transcriptional defects of these strain backgrounds may be a secondary consequence of the deficient expression of a transcription factor, Atf1-Pcr1, and other components of the transcriptional machinery.


Subject(s)
Oxidative Stress/genetics , RNA, Messenger/genetics , RNA, Transfer, Lys/metabolism , Schizosaccharomyces/genetics , Chromatin/drug effects , Chromatin/genetics , Chromatin/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Hydrogen Peroxide/pharmacology , Lysine/metabolism , Peptide Chain Elongation, Translational , Protein Biosynthesis/drug effects , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Messenger/metabolism , RNA, Transfer, Lys/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Uridine/genetics
19.
Transcription ; 4(4): 146-52, 2013.
Article in English | MEDLINE | ID: mdl-23756342

ABSTRACT

Cyclin-dependent kinases (CDKs) play a central role in governing eukaryotic cell division. It is becoming clear that the transcription cycle of RNA polymerase II (RNAP II) is also regulated by CDKs; in metazoans, the cell cycle and transcriptional CDK networks even share an upstream activating kinase, which is itself a CDK. From recent chemical-genetic analyses we know that CDKs and their substrates control events both early in transcription (the transition from initiation to elongation) and late (3' end formation and transcription termination). Moreover, mutual dependence on CDK activity might couple the "beginning" and "end" of the cycle, to ensure the fidelity of mRNA maturation and the efficient recycling of RNAP II from sites of termination to the transcription start site (TSS). As is the case for CDKs involved in cell cycle regulation, different transcriptional CDKs act in defined sequence on multiple substrates. These phosphorylations are likely to influence gene expression by several mechanisms, including direct, allosteric effects on the transcription machinery, co-transcriptional recruitment of proteins needed for mRNA-capping, splicing and 3' end maturation, dependent on multisite phosphorylation of the RNAP II C-terminal domain (CTD) and, perhaps, direct regulation of RNA-processing or histone-modifying machinery. Here we review these recent advances, and preview the emerging challenges for transcription-cycle research.


Subject(s)
Cyclin-Dependent Kinases/metabolism , RNA Polymerase II/metabolism , Animals , Cyclin-Dependent Kinases/genetics , Humans , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/chemistry , RNA Splicing , Terminator Regions, Genetic , Transcription Factor TFIIH/metabolism , Transcription Initiation Site , Transcription, Genetic , Yeasts/metabolism
20.
Nat Struct Mol Biol ; 19(11): 1108-15, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23064645

ABSTRACT

Promoter-proximal pausing by RNA polymerase II (Pol II) ensures gene-specific regulation and RNA quality control. Structural considerations suggested a requirement for initiation-factor eviction in elongation-factor engagement and pausing of transcription complexes. Here we show that selective inhibition of Cdk7--part of TFIIH--increases TFIIE retention, prevents DRB sensitivity-inducing factor (DSIF) recruitment and attenuates pausing in human cells. Pause release depends on Cdk9-cyclin T1 (P-TEFb); Cdk7 is also required for Cdk9-activating phosphorylation and Cdk9-dependent downstream events--Pol II C-terminal domain Ser2 phosphorylation and histone H2B ubiquitylation--in vivo. Cdk7 inhibition, moreover, impairs Pol II transcript 3'-end formation. Cdk7 thus acts through TFIIE and DSIF to establish, and through P-TEFb to relieve, barriers to elongation: incoherent feedforward that might create a window to recruit RNA-processing machinery. Therefore, cyclin-dependent kinases govern Pol II handoff from initiation to elongation factors and cotranscriptional RNA maturation.


Subject(s)
Cyclin-Dependent Kinases/physiology , RNA Polymerase II/metabolism , Transcription Elongation, Genetic/physiology , Transcription Initiation, Genetic/physiology , Chromatin Immunoprecipitation , Cyclin-Dependent Kinase 9/metabolism , Cyclin-Dependent Kinases/metabolism , HCT116 Cells , Histones/metabolism , Humans , Immunoblotting , Nuclear Proteins/metabolism , Phosphorylation , Transcription Factors/metabolism , Transcription Factors, TFII/metabolism , Transcriptional Elongation Factors , Ubiquitination , Cyclin-Dependent Kinase-Activating Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...