Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
MDM Policy Pract ; 8(2): 23814683231202716, 2023.
Article in English | MEDLINE | ID: mdl-37841496

ABSTRACT

Background. To support proactive decision making during the COVID-19 pandemic, mathematical models have been leveraged to identify surveillance indicator thresholds at which strengthening nonpharmaceutical interventions (NPIs) is necessary to protect health care capacity. Understanding tradeoffs between different adaptive COVID-19 response components is important when designing strategies that balance public preference and public health goals. Methods. We considered 3 components of an adaptive COVID-19 response: 1) the threshold at which to implement the NPI, 2) the time needed to implement the NPI, and 3) the effectiveness of the NPI. Using a compartmental model of SARS-CoV-2 transmission calibrated to Minnesota state data, we evaluated different adaptive policies in terms of the peak number of hospitalizations and the time spent with the NPI in force. Scenarios were compared with a reference strategy, in which an NPI with an 80% contact reduction was triggered when new weekly hospitalizations surpassed 8 per 100,000 population, with a 7-day implementation period. Assumptions were varied in sensitivity analysis. Results. All adaptive response scenarios substantially reduced peak hospitalizations relative to no response. Among adaptive response scenarios, slower NPI implementation resulted in somewhat higher peak hospitalization and a longer time spent under the NPIs than the reference scenario. A stronger NPI response resulted in slightly less time with the NPIs in place and smaller hospitalization peak. A higher trigger threshold resulted in greater peak hospitalizations with little reduction in the length of time under the NPIs. Conclusions. An adaptive NPI response can substantially reduce infection circulation and prevent health care capacity from being exceeded. However, population preferences as well as the feasibility and timeliness of compliance with reenacting NPIs should inform response design. Highlights: This study uses a mathematical model to compare different adaptive nonpharmaceutical intervention (NPI) strategies for COVID-19 management across 3 dimensions: threshold when the NPI should be implemented, time it takes to implement the NPI, and the effectiveness of the NPI.All adaptive NPI response scenarios considered substantially reduced peak hospitalizations compared with no response.Slower NPI implementation results in a somewhat higher peak hospitalization and longer time spent with the NPI in place but may make an adaptive strategy more feasible by allowing the population sufficient time to prepare for changing restrictions.A stronger, more effective NPI response results in a modest reduction in the time spent under the NPIs and slightly lower peak hospitalizations.A higher threshold for triggering the NPI delays the time at which the NPI starts but results in a higher peak hospitalization and does not substantially reduce the time the NPI remains in force.

2.
MDM Policy Pract ; 5(2): 2381468320952409, 2020.
Article in English | MEDLINE | ID: mdl-32885045

ABSTRACT

Purpose. In 2018, the US Preventive Services Task Force (USPSTF) endorsed three strategies for cervical cancer screening in women ages 30 to 65: cytology every 3 years, testing for high-risk types of human papillomavirus (hrHPV) every 5 years, and cytology plus hrHPV testing (co-testing) every 5 years. It further recommended that women discuss with health care providers which testing strategy is best for them. To inform such discussions, we used decision analysis to estimate outcomes of screening strategies recommended for women at age 30. Methods. We constructed a Markov decision model using estimates of the natural history of HPV and cervical neoplasia. We evaluated the three USPSTF-endorsed strategies, hrHPV testing every 3 years and no screening. Outcomes included colposcopies with biopsy, false-positive testing (a colposcopy in which no cervical intraepithelial neoplasia grade 2 or worse was found), treatments, cancers, and cancer mortality expressed per 10,000 women over a shorter-than-lifetime horizon (15-year). Results. All strategies resulted in substantially lower cancer and cancer death rates compared with no screening. Strategies with the lowest likelihood of cancer and cancer death generally had higher likelihood of colposcopy and false-positive testing. Conclusions. The screening strategies we evaluated involved tradeoffs in terms of benefits and harms. Because individual women may place different weights on these projected outcomes, the optimal choice for each woman may best be discerned through shared decision making.

3.
Infect Control Hosp Epidemiol ; 39(11): 1340-1346, 2018 11.
Article in English | MEDLINE | ID: mdl-30231943

ABSTRACT

OBJECTIVE: We developed a decision analytic model to evaluate the impact of a preoperative Staphylococcus aureus decolonization bundle on surgical site infections (SSIs), health-care-associated costs (HCACs), and deaths due to SSI. METHODS: Our model population comprised US adults undergoing elective surgery. We evaluated 3 self-administered preoperative strategies: (1) the standard of care (SOC) consisting of 2 disinfectant soap showers; (2) the "test-and-treat" strategy consisting of the decolonization bundle including chlorhexidine gluconate (CHG) soap, CHG mouth rinse, and mupirocin nasal ointment for 5 days) if S. aureus was found at any of 4 screened sites (nasal, throat, axillary, perianal area), otherwise the SOC; and (3) the "treat-all" strategy consisting of the decolonization bundle for all patients, without S. aureus screening. Model parameters were derived primarily from a randomized controlled trial that measured the efficacy of the decolonization bundle for eradicating S. aureus. RESULTS: Under base-case assumptions, the treat-all strategy yielded the fewest SSIs and the lowest HCACs, followed by the test-and-treat strategy. In contrast, the SOC yielded the most SSIs and the highest HCACs. Consequently, relative to the SOC, the average savings per operation was $217 for the treat-all strategy and $123 for the test-and-treat strategy, and the average savings per per SSI prevented was $21,929 for the treat-all strategy and $15,166 for the test-and-treat strategy. All strategies were sensitive to the probability of acquiring an SSI and the increased risk if SSI if the patient was colonized with SA. CONCLUSION: We predict that the treat-all strategy would be the most effective and cost-saving strategy for preventing SSIs. However, because this strategy might select more extensively for mupirocin-resistant S. aureus and cause more medication adverse effects than the test-and-treat approach or the SOC, additional studies are needed to define its comparative benefits and harms.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Chlorhexidine/analogs & derivatives , Disinfection/methods , Models, Economic , Mupirocin/administration & dosage , Surgical Wound Infection/prevention & control , Administration, Intranasal , Anti-Bacterial Agents/economics , Chlorhexidine/administration & dosage , Chlorhexidine/economics , Cost-Benefit Analysis , Disinfection/economics , Humans , Mupirocin/economics , Staphylococcal Infections/diagnosis , Staphylococcal Infections/prevention & control , Staphylococcus aureus/isolation & purification , Surgical Wound Infection/economics , Surgical Wound Infection/microbiology , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...