Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
ACS Sustain Chem Eng ; 12(27): 10075-10088, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38994545

ABSTRACT

Calcium carbonate (CaCO3) precipitation plays a significant role during the carbon capture process; however, the mechanism is still only partially understood. Understanding the atomic-level carbonation mechanism of cementitious materials can promote the mineralization capture, immobilization, and utilization of carbon dioxide, as well as the improvement of carbonated cementitious materials' performance. Therefore, based on molecular dynamics simulations, this paper investigates the effect of Si/Al concentrations in cementitious materials on carbonation kinetics. We first verify the force field used in this paper. Then, we analyze the network connectivity evolution, the number and size of the carbonate cluster during gelation, the polymerization rate, and the activation energy. Finally, in order to reveal the reasons that caused the evolution of polymerization rate and activation energy, we analyze the local stress and charge of atoms. Results show that the Ca-Oc bond number and carbonate cluster size increase with the decrease of the Si/Al concentration and the increase of temperature, leading to the higher amorphous calcium carbonate gel polymerization degree. The local stress of each atom in the system is the driving force of the gelation transition. The presence of Si and Al components increases the atom's local stress and average charge, thus causing the increase of the energy barrier of CaCO3 polymerization and the activation energy of carbonation.

2.
Heliyon ; 10(12): e32426, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38975156

ABSTRACT

This study evaluates the techno-economic feasibility and the embodied carbon dioxide intensity (eCI) of a novel process for producing nominally pure (>95 mass %) calcium hydroxide without the need for the thermal calcination of limestone. The process relies on the aqueous extraction of calcium from alkaline industrial wastes following which portlandite (Ca(OH)2: CH, a.k.a. slaked lime or hydrated lime) is precipitated by application of a waste-heat based thermal swing. This approach takes advantage of the temperature dependent solubility of CH at ambient pressure. We evaluated the feasibility of implementing this process in the U.S. based on the geospatial availability of waste heat and slags as a Ca-source. For the base case, the cost of production of "Low-Temperature Portlandite (LTP)" is 2-to-3 times that of traditional portlandite (∼$180/tonne). The main driver of cost is the electricity demand for reverse osmosis (RO) which is used to concentrate Ca-ions in solution, and the costs of membrane replacement. Our sensitivity analysis showed that parity with the cost of production of traditional portlandite is readily achievable by selecting membranes with better durability (i.e., better pH resistance) and flux (i.e., higher permeability) without sacrificing selectivity. Significantly, LTP features an eCI that is between 40%- and - 80 % lower than its traditional counterpart when electricity is sourced from natural gas combustion or wind power, respectively. Finally, our geospatial analysis reveals that there are three areas in the U.S. with the potential for implementation of industrial-scale facilities that could produce at least 50 tonnes of pure Ca(OH)2 per day, while achieving a production cost of ∼$270 per tonne of Ca(OH)2, owing to the proximity between slag feedstocks and waste heat sources.

3.
J Chem Phys ; 160(23)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38884405

ABSTRACT

It is significant to investigate the calcium carbonate (CaCO3) precipitation mechanism during the carbon capture process; nevertheless, CaCO3 precipitation is not clearly understood yet. Understanding the carbonation mechanism at the atomic level can contribute to the mineralization capture and utilization of carbon dioxide, as well as the development of new cementitious materials with high-performance. There are many factors, such as temperature and CO2 concentration, that can influence the carbonation reaction. In order to achieve better carbonation efficiency, the reaction conditions of carbonation should be fully verified. Therefore, based on molecular dynamics simulations, this paper investigates the atomic-scale mechanism of carbonation. We investigate the effect of carbonation factors, including temperature and concentration, on the kinetics of carbonation (polymerization rate and activation energy), the early nucleation of calcium carbonate, etc. Then, we analyze the local stresses of atoms to reveal the driving force of early stage carbonate nucleation and the reasons for the evolution of polymerization rate and activation energy. Results show that the higher the calcium concentration or temperature, the higher the polymerization rate of calcium carbonate. In addition, the activation energies of the carbonation reaction increase with the decrease in calcium concentrations.

4.
ACS Polym Au ; 4(1): 86-97, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38371729

ABSTRACT

We demonstrate facile fabrication of highly filled, lightweight organic-inorganic composites comprising polyurethanes covalently linked with naturally occurring clinoptilolite microparticles. These polyurethane/clinoptilolite (PUC) composites are shown to mitigate particle aggregation usually observed in composites with high particle loadings and possess enhanced thermal insulation and acoustic attenuation compared with conventionally employed materials (e.g., drywall and gypsum). In addition to these functional properties, the PUC composites also possess flexural strengths and strain capacities comparable to and higher than ordinary Portland cement (OPC), respectively, while being ∼1.5× lighter than OPC. The porosity, density, and mechanical and functional properties of these composites are tuned by systematically varying their composition (diisocyanate, polyurethane, and inorganic contents) and the nature of the organic (reactivity and source of polyol) components. The fabrication process involves mild curing conditions and uses commonly available reagents (naturally occurring aluminosilicate particles, polyols, and diisocyanate), thereby making the process scalable. Finally, the composite properties are shown to be independent of the polyol source (virgin or recycled), underlining the generality of this approach for the scalable utilization of recycled polyols.

5.
Mater Horiz ; 11(6): 1448-1464, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38214154

ABSTRACT

The increasing demand for rare earth elements (REEs) makes them a scarce strategic resource for technical developments. In that regard, harvesting REEs from coal ashes-a waste byproduct from coal power plants-offers an alternative solution to conventional ore-based extraction. However, this approach is bottlenecked by our ability to screen coal ashes bearing large concentrations of REEs from feedstocks-since measuring the REE content in ashes is a time-consuming and costly task requiring advanced analytical tools. Here, we propose a machine learning approach to predict the REE contents based on the bulk composition of coal ashes, easily measurable under the routine testing protocol. We introduce a multi-task neural network that simultaneously predicts the contents of different REEs. Compared to the single-task model, this model exhibits notably improved accuracy and reduced sensitivity to noise. Further model analyses reveal key data patterns for screening coal ashes with high REE concentrations. Additionally, we showcase the utilization of transfer learning to improve the adaptability of our model to coal ashes from a distinct source.

6.
Waste Manag ; 170: 103-111, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37562200

ABSTRACT

The pozzolanic reaction of fly ashes with calcium-based additives can be effectively used to solidify and chemically stabilize (S&S process) highly concentrated brines inside a cementitious matrix. However, complex interactions between the fly ash, the additive, and the brine typically affect the phases formed at equilibrium, and the resulting solid capacity to successfully encapsulate the brine and its contaminants. Here, the performances of two types of fly ash (a Class C and Class F fly ash) are assessed when combined with different additives (two types of cement, or lime with and without NaAlO2), and two types of brine (NaCl or CaCl2) over a range of concentrations (0 ≤ [Cl-] ≤ 2 M). The best performing matrices - i.e., the matrices with the highest Cl-containing phases content - were identified using XRD and TGA. The experimental results were then combined with thermodynamic modeling to dissociate the contribution of the fly ash from that of the additives. All results were implemented in a machine learning model that showed good accuracy at predicting the fly ash degree of reaction, allowing for the robust prediction of extended systems performance when combined with thermodynamic modeling.


Subject(s)
Coal Ash , Refuse Disposal , Refuse Disposal/methods , Calcium , Sodium Chloride , Calcium Chloride
7.
ACS ES T Eng ; 3(7): 955-968, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37469756

ABSTRACT

We present the mass balances associated with carbon dioxide (CO2) removal (CDR) using seawater as both the source of reactants and as the reaction medium via electrolysis following the "Equatic" (formerly known as "SeaChange") process. This process, extensively detailed in La Plante E.C.; ACS Sustain. Chem. Eng.2021, 9, ( (3), ), 1073-1089, involves the application of an electric overpotential that splits water to form H+ and OH- ions, producing acidity and alkalinity, i.e., in addition to gaseous coproducts, at the anode and cathode, respectively. The alkalinity that results, i.e., via the "continuous electrolytic pH pump" results in the instantaneous precipitation of calcium carbonate (CaCO3), hydrated magnesium carbonates (e.g., nesquehonite: MgCO3·3H2O, hydromagnesite: Mg5(CO3)4(OH)2·4H2O, etc.), and/or magnesium hydroxide (Mg(OH)2) depending on the CO32- ion-activity in solution. This results in the trapping and, hence, durable and permanent (at least ∼10 000-100 000 years) immobilization of CO2 that was originally dissolved in water, and that is additionally drawn down from the atmosphere within: (a) mineral carbonates, and/or (b) as solvated bicarbonate (HCO3-) and carbonate (CO32-) ions (i.e., due to the absorption of atmospheric CO2 into seawater having enhanced alkalinity). Taken together, these actions result in the net removal of ∼4.6 kg of CO2 per m3 of seawater catholyte processed. Geochemical simulations quantify the extents of net CO2 removal including the dependencies on the process configuration. It is furthermore indicated that the efficiency of realkalinization of the acidic anolyte using alkaline solids depends on their acid neutralization capacity and dissolution reactivity. We also assess changes in seawater chemistry resulting from Mg(OH)2 dissolution with emphasis on the change in seawater alkalinity and saturation state. Overall, this analysis provides direct quantifications of the ability of the Equatic process to serve as a means for technological CDR to mitigate the worst effects of accelerating climate change.

8.
Langmuir ; 39(30): 10395-10405, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37462925

ABSTRACT

Portlandite (calcium hydroxide: CH: Ca(OH)2) suspensions aggregate spontaneously and form percolated fractal aggregate networks when dispersed in water. Consequently, the viscosity and yield stress of portlandite suspensions diverge at low particle loadings, adversely affecting their processability. Even though polycarboxylate ether (PCE)-based comb polyelectrolytes are routinely used to alter the particle dispersion state, water demand, and rheology of similar suspensions (e.g., ordinary portland cement suspensions) that feature a high pH and high ionic strength, their use to control portlandite suspension rheology has not been elucidated. This study combines adsorption isotherms and rheological measurements to elucidate the role of PCE composition (i.e., charge density, side chain length, and grafting density) in controlling the extent of PCE adsorption, particle flocculation, suspension yield stress, and thermal response of portlandite suspensions. We show that longer side-chain PCEs are more effective in affecting suspension viscosity and yield stress, in spite of their lower adsorption saturation limit and fractional adsorption. The superior steric hindrance induced by the longer side chain PCEs results in better efficacy in mitigating particle aggregation even at low dosages. However, when dosed at optimal dosages (i.e., a dosage that induces a dynamically equilibrated dispersion state of particle aggregates), different PCE-dosed portlandite suspensions exhibit identical fractal structuring and rheological behavior regardless of the side chain length. Furthermore, it is shown that the unusual evolution of the rheological response of portlandite suspensions with temperature can be tailored by adjusting the PCE dosage. The ability of PCEs to modulate the rheology of aggregating charged particle suspensions can be generally extended to any colloidal suspension with a strong screening of repulsive electrostatic interactions.

9.
J Chem Phys ; 157(23): 234501, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36550033

ABSTRACT

The precipitation of calcium carbonate (CaCO3) is a key mechanism in carbon capture applications relying on mineralization. In that regard, Ca-rich cementitious binders offer a unique opportunity to act as a large-scale carbon sink by immobilizing CO2 as calcium carbonate by mineralization. However, the atomistic mechanism of calcium carbonate formation is still not fully understood. Here, we study the atomic scale nucleation mechanism of an early stage amorphous CaCO3 gel based on reactive molecular dynamics (MD) simulations. We observe that reactive MD offers a notably improved description of this reaction as compared to classical MD, which allows us to reveal new insights into the structure of amorphous calcium carbonate gels and formation kinetics thereof.


Subject(s)
Calcium Carbonate , Molecular Dynamics Simulation , Calcium Carbonate/chemistry
10.
Sci Rep ; 12(1): 6071, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35414648

ABSTRACT

We report initial experimental evidence of auxeticity in calcite by ion implanting (1010) oriented single crystalline calcite with Ar+ at room temperature using an ion energy of 400 keV and a dose of 1 × 1014 cm-2. Lattice compression normal to the substrate surface was observed, which is an atypical result for ion implanted materials. The auxetic behavior is consistent with predictions that indicate auxeticity had been predicted along two crystallographic directions including [1010]. Materials with a positive Poisson's ratio experience lattice expansion normal to the substrate surface when ion implanted, whereas lattice contraction normal to the surface is evidence of auxetic behavior. Triple-axis X-ray diffraction measurements confirmed the auxetic strain state of the implanted calcite substrates. Reciprocal space maps for the symmetric 3030 and asymmetric 1450 reflections revealed that the implanted region was fully strained (pseudomorphic) to the bulk of the substrate, as is typical with implanted single crystals. A symmetric (3030) ω:2θ line scan was used with X-ray dynamical diffraction simulations to model the strain profile and extract the variation of compressive strain as a function of depth normal to the substrate surface. SRIM calculations were performed to obtain a displacement-per-atom profile and implanted Ar+ concentration profile. It was found that the strain profile matches the displacement-per-atom profile. This study demonstrated the use of ion implantation and X-ray diffraction methods to probe mechanical properties of materials and to test predictions such as the auxeticity.

11.
Water Res ; 204: 117592, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34469809

ABSTRACT

As(III) species are the predominant form of arsenic found in groundwater. However, nanofiltration (NF) and reverse osmosis (RO) membranes are often unable to effectively reject As(III). In this study, we fabricate highly conducting ultrafiltration (UF) membranes for effective As(III) rejection. These membranes consist of a hydrophilic nickel-carbon nanotubes layer deposited on a UF support, and used as cathodes. Applying cathodic potentials significantly increased As(III) rejection in synthetic/real tap water, a result of locally elevated pH that is brought upon through water electrolysis at the membrane/water interface. The elevated pH conditions convert H3ASO3 to H2AsO3-/HAsO32- that are rejected by the negatively charged membranes. In addition, it was found that Mg(OH)2 that precipitates on the membrane can further trap arsenic. Importantly, almost all As(III) passing through the membranes is oxidized to As(V) by hydrogen peroxide produced on the cathode, which significantly decreased its overall toxicity and mobility. Although the high pH along the membrane surface led to mineral scaling, this scale could be partially removed by backwashing the membrane. To the best of our knowledge, this is the first report of effective As(III) removal using low-pressure membranes, with As(III) rejection higher than that achieved by NF and RO, and high water permeance.


Subject(s)
Arsenic , Nanotubes, Carbon , Water Purification , Membranes, Artificial , Osmosis , Ultrafiltration
12.
J Colloid Interface Sci ; 590: 199-209, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33548603

ABSTRACT

HYPOTHESIS: Depending on their composition, hydrated gels can be homogeneous or phase-separated, which, in turn, affects their dynamical and mechanical properties. However, the nature of the structural features, if any, that govern the propensity for a given gel to phase-separate remains largely unknown. Here, we argue that the propensity for hydrated gels to phase-separate is topological in nature. SIMULATIONS: We employ reactive molecular dynamics simulations to model the early-age precipitation of calcium-alumino-silicate-hydrate (CASH) gels with varying compositions, i.e., (CaO)1.7(Al2O3)x(SiO2)1 -x(H2O)3.7 +x. By adopting topological constraint theory, we investigate the structural origin of phase separation in hydrated gels. FINDINGS: We report the existence of a homogeneous-to-phase-separated transition, wherein Si-rich (x ≤ 0.10) CASH gels are homogeneous, whereas Al-rich (x > 0.10) CASH gels tend to phase-separate. Furthermore, we demonstrate that this transition is correlated to a topological flexible-to-rigid transition within the atomic network. We reveal that the propensity for topologically-overconstrained gels to phase-separate arises from the existence of some internal stress within their atomic network, which acts as an energy penalty that drives phase separation.

13.
Sci Rep ; 11(1): 3922, 2021 Feb 16.
Article in English | MEDLINE | ID: mdl-33594212

ABSTRACT

Carbonaceous (e.g., limestone) and aluminosilicate (e.g., calcined clay) mineral additives are routinely used to partially replace ordinary portland cement in concrete to alleviate its energy impact and carbon footprint. These mineral additives-depending on their physicochemical characteristics-alter the hydration behavior of cement; which, in turn, affects the evolution of microstructure of concrete, as well as the development of its properties (e.g., compressive strength). Numerical, reaction-kinetics models-e.g., phase boundary nucleation-and-growth models; which are based partly on theoretically-derived kinetic mechanisms, and partly on assumptions-are unable to produce a priori prediction of hydration kinetics of cement; especially in multicomponent systems, wherein chemical interactions among cement, water, and mineral additives occur concurrently. This paper introduces a machine learning-based methodology to enable prompt and high-fidelity prediction of time-dependent hydration kinetics of cement, both in plain and multicomponent (e.g., binary; and ternary) systems, using the system's physicochemical characteristics as inputs. Based on a database comprising hydration kinetics profiles of 235 unique systems-encompassing 7 synthetic cements and three mineral additives with disparate physicochemical attributes-a random forests (RF) model was rigorously trained to establish the underlying composition-reactivity correlations. This training was subsequently leveraged by the RF model: to predict time-dependent hydration kinetics of cement in new, multicomponent systems; and to formulate optimal mixture designs that satisfy user-imposed kinetics criteria.

14.
Waste Manag ; 121: 117-126, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33360811

ABSTRACT

High-sulfur mixed fly ash residues from semi-dry flue gas desulfurization units in coal-fired power plants are unsuitable for use as supplementary cementitious material (SCM) for concrete production or carbon dioxide utilization. In this work, we explore the potential for upcycling a representative spray dry absorber ash (10.44 wt% SO3) into concrete-SCM by selective sulfur removal via weak acid dissolution while simultaneously exploring the possibility for CO2 capture. Towards this effort, parametric studies varying liquid-to-solid ratio, acidity, and CO2 pressure were conducted in a batch reactor to establish the sulfur removal characteristics in de-ionized water, nitric acid, and carbonic acid, respectively. The dissolution studies show that the leaching of sulfur from calcium sulfite hemihydrate, which is the predominant S phase, is rapid and achieves a concentration plateau within 5 min, and subsequently, appears to be controlled by the primary mineral solubility. Preferential S removal was sufficient to meet SCM standards (e.g., 5.0 wt% as per ASTM C618) using all three washing solutions with 0.62-0.72 selectivity (S^), defined as the molar ratio of S to Ca in the leachate, for a raw fly ash with bulk S^ = 0.3. Acid dissolution with 1.43 meq/g of ash or under 5 atm CO2 retained > 18 wt% CaO and other Si-, Al-rich phases in the fly ash. Based on the experimental findings, two sulfur removal schemes were suggested for either integration with CO2 capture and utilization processes using flue gas or to produce fly ash for use as a SCM.


Subject(s)
Coal Ash , Coal , Carbon Dioxide , Coal Ash/analysis , Power Plants , Sulfur , Sulfur Dioxide
15.
RSC Adv ; 11(3): 1762-1772, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-35424115

ABSTRACT

Calcium hydroxide (Ca(OH)2), a commodity chemical, finds use in diverse industries ranging from food, to environmental remediation and construction. However, the current thermal process of Ca(OH)2 production via limestone calcination is energy- and CO2-intensive. Herein, we demonstrate a novel aqueous-phase calcination-free process to precipitate Ca(OH)2 from saturated solutions at sub-boiling temperatures in three steps. First, calcium was extracted from an archetypal alkaline industrial waste, a steel slag, to produce an alkaline leachate. Second, the leachate was concentrated using reverse osmosis (RO) processing. This elevated the Ca-abundance in the leachate to a level approaching Ca(OH)2 saturation at ambient temperature. Thereafter, Ca(OH)2 was precipitated from the concentrated leachate by forcing a temperature excursion in excess of 65 °C while exploiting the retrograde solubility of Ca(OH)2. This nature of temperature swing can be forced using low-grade waste heat (≤100 °C) as is often available at power generation, and industrial facilities, or using solar thermal heat. Based on a detailed accounting of the mass and energy balances, this new process offers at least ≈65% lower CO2 emissions than incumbent methods of Ca(OH)2, and potentially, cement production.

16.
ACS Appl Mater Interfaces ; 12(49): 55399-55410, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33258375

ABSTRACT

By focusing the power of sound, acoustic stimulation (i.e., often referred to as sonication) enables numerous "green chemistry" pathways to enhance chemical reaction rates, for instance, of mineral dissolution in aqueous environments. However, a clear understanding of the atomistic mechanism(s) by which acoustic stimulation promotes mineral dissolution remains unclear. Herein, by combining nanoscale observations of dissolving surface topographies using vertical scanning interferometry, quantifications of mineral dissolution rates via analysis of solution compositions using inductively coupled plasma optical emission spectrometry, and classical molecular dynamics simulations, we reveal how acoustic stimulation induces dissolution enhancement. Across a wide range of minerals (Mohs hardness ranging from 3 to 7, surface energy ranging from 0.3 to 7.3 J/m2, and stacking fault energy ranging from 0.8 to 10.0 J/m2), we show that acoustic fields enhance mineral dissolution rates (reactivity) by inducing atomic dislocations and/or atomic bond rupture. The relative contributions of these mechanisms depend on the mineral's underlying mechanical properties. Based on this new understanding, we create a unifying model that comprehensively describes how cavitation and acoustic stimulation processes affect mineral dissolution rates.

17.
ACS Appl Mater Interfaces ; 12(37): 42030-42040, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32876431

ABSTRACT

Surface modification offers a straightforward means to alter and enhance the properties and performance of materials, such as nanofiltration membranes for water softening. Herein, we demonstrate how a membrane's surface charge can be altered by grafting different electrostatically varying copolymers onto commercial membrane surfaces using perfluorophenylazide (PFPA) photochemistry for enhanced ion separation performance. The native membrane's performance-i.e., in terms of divalent cation separation-with copolymer coatings containing a positively charged quaternary ammonium (-N(Me)3+), a negatively charged sulfonate (-SO3-), and an essentially neutral zwitterion (sulfobetaine, -N(Me)2R2+, and -SO3-), respectively, indicates that: (a) the sulfonated polymer induces robust Coulombic exclusion of divalent anions as compared to the negatively charged native membrane surface on account of its higher negative charge; (b) the positively charged ammonium coating induces exclusion of cations more effectively than the native membrane; and significantly, (c) the zwitterion polymer coating, which reduces the surface roughness and improves wettability, in spite of its near-neutral charge enhances exclusion of both divalent cations and anions on account of aperture sieving by the compact zwitterion polymer that arises from its ability to limit the size of ions that transport through the polymer along with dielectric exclusion. The outcomes thereby inform new pathways to achieve size- and charge-based exclusion of ionic, molecular, and other species contained in liquid streams.

18.
Langmuir ; 36(36): 10811-10821, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32799535

ABSTRACT

Temperature is well known to affect the aggregation behavior of colloidal suspensions. This paper elucidates the temperature dependence of the rheology of portlandite (calcium hydroxide: Ca(OH)2) suspensions that feature a high ionic strength and a pH close to the particle's isoelectric point. In contrast to the viscosity of the suspending medium (saturated solution of Ca(OH)2 in water), the viscosity of Ca(OH)2 suspensions is found to increase with elevating temperature. This behavior is shown to arise from the temperature-induced aggregation of polydisperse Ca(OH)2 particulates because of the diminution of electrostatic repulsive forces with increasing temperature. The temperature dependence of the suspension viscosity is further shown to diminish with increasing particle volume fraction as a result of volumetric crowding and the formation of denser fractal structures in the suspension. Significantly, the temperature-dependent rheological response of suspensions is shown to be strongly affected by the suspending medium's properties, including ionic strength and ion valence, which affect aggregation kinetics. These outcomes provide new insights into aggregation processes that affect the temperature-dependent rheology of portlandite-based and similar suspensions that feature strong charge screening behavior.

19.
J Chem Phys ; 153(1): 014501, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32640807

ABSTRACT

Concrete gains its strength from the precipitation of a calcium-alumino-silicate-hydrate (C-A-S-H) colloidal gel, which acts as its binding phase. However, despite concrete's ubiquity in the building environment, the atomic-scale mechanism of C-A-S-H precipitation is still unclear. Here, we use reactive molecular dynamics simulations to model the early-age precipitation of a C-A-S-H gel. We find that, upon gelation, silicate and aluminate precursors condensate and polymerize to form an aluminosilicate gel network. Notably, we demonstrate that the gelation reaction is driven by the existence of a mismatch of atomic-level internal stress between Si and Al polytopes, which are initially experiencing some local tension and compression, respectively. The polymerization of Si and Al polytopes enables the release of these competitive stresses.

20.
Soft Matter ; 16(16): 3929-3940, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32240280

ABSTRACT

The remarkable increase in the flow resistance of dense suspensions can hinder 3D-printing processes on account of flow cessation in the extruder, and filament fragility/rupture following deposition. Understanding the nature of rheological changes that occur is critical to manipulate flow conditions or to dose flow modifiers for 3D-printing. Therefore, this paper elucidates the influences of clay particulates on controlling flow cessation and the shape stability of dense cementing suspensions that typically feature poor printability. A rope coiling method was implemented with varying stand-off distances to probe the buckling stability and tendency to fracture of dense suspensions that undergo stretching and bending during deposition. The contributions of flocculation and short-term percolation due to the kinetics of structure formation to deformation rate were deconvoluted using a stepped isostress method. It is shown that the shear stress indicates a divergence with a power-law scaling when the particle volume fraction approaches the jamming limit; φ → φj ≈ φmax. Such a power-law divergence of the shear stress decreases by a factor of 10 with increasing clay dosage. Such behavior in clay-containing suspensions arises from a decrease in the relative packing fraction (φ/φmax) and the formation of fractally-architected aggregates with stronger interparticle interactions, whose uniform arrangement controls flow cessation in the extruder and suspension homogeneity, thereby imparting greater buckling stability. The outcomes offer new insights for assessing/improving the extrudability and printability behavior during slurry-based 3D-printing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...