Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cytotherapy ; 26(2): 157-170, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38069981

ABSTRACT

BACKGROUND AIMS: Extracellular vesicle (EV) isolation methods are based on different physicochemical properties and may result in the purification of distinct EV populations. We compared two different isolation methods suitable for producing clinical-grade mesenchymal stromal cell-derived EVs (MSC-EVs)-ion exchange chromatography (IEX) and ultrafiltration (UF)-and evaluated their impact on the composition and functional properties of EVs. METHODS: EVs were purified from conditioned culture medium using an anion exchange resin (IEX) or Amicon filters with a 100-kDa cutoff (UF) (MilliporeSigma, Burlington, MA, USA). We assessed nanoparticle size and distribution by nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS) and morphology by transmission electron microscopy. We also measured protein, lipid and total RNA concentration and immunophenotyped both EV populations by flow cytometry (MACSPlex assay; Miltenyi Biotec, Bergisch Gladbach, Germany). Moreover, immunomodulatory activity was tested using a standardized macrophage polarization assay and T-cell stimulation assay. Finally, proteomic analysis and cytokine quantification were carried out to better characterize both EV populations. RESULTS: We found by both TRPS and NTA that IEX and UF yielded a comparable amount of total particles with similar size and distribution. In addition, a similar quantity of lipids was obtained with the two procedures. However, IEX yielded 10-fold higher RNA quantity and a larger amount of proteins than UF. MSC-EVs isolated from IEX and UF were positive for the exosome markers CD9, CD63 and CD81 and showed a comparable surface marker expression pattern. Both populations demonstrated immunomodulatory activity in vitro, as they prevented acquisition of the M1 phenotype in lipopolysaccharide-stimulated macrophages and inhibited acquisition of the activation markers CD69 and CD25 on T cells, but the IEX-EVs exerted a significantly greater immunomodulatory effect on both macrophages and T cells compared with UF-EVs. Proteomic analysis and gene ontology enrichment analysis revealed no major differences between the preparations. Finally, cytokine quantification revealed that IEX-EVs were more enriched in some crucial anti-inflammatory and immunomodulatory cytokines (e.g., IL-2, IL-10, transforming growth factor beta and vascular endothelial growth factor) compared with UF-EVs. CONCLUSIONS: MSC-EVs isolated by IEX and UF displayed similar physicochemical, phenotypic and functional characteristics. In our conditions, both EV populations demonstrated important anti-inflammatory activity in macrophages and T cells. However, IEX-EVs were more potent than UF-EVs, which may indicate the superiority of this method for the production of clinical-grade EVs.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Proteomics , Vascular Endothelial Growth Factor A/metabolism , Extracellular Vesicles/metabolism , Cytokines/metabolism , Anti-Inflammatory Agents/metabolism , RNA/analysis , RNA/metabolism
2.
PLoS One ; 18(9): e0291589, 2023.
Article in English | MEDLINE | ID: mdl-37713424

ABSTRACT

In the last few years, extracellular vesicles (EVs) have become of great interest due to their potential as biomarkers, drug delivery systems, and, in particular, therapeutic agents. However, there is no consensus on which is the best way to isolate these EVs. The choice of the isolation method depends on the starting material (i.e., conditioned culture media, urine, serum, etc.) and their downstream applications. Even though there are numerous methods to isolate EVs, few are compatible with clinical applications as they are not scalable. In the present work, we set up a protocol to isolate EVs from conditioned media by ion exchange chromatography, a simple, fast, and scalable method, suitable for clinical production. We performed the isolation using an anion exchange resin (Q sepharose) and eluted the EVs using 500 mM NaCl. We characterized the elution profile by measuring protein and lipid concentration, and CD63 by ELISA. Moreover, we immunophenotyped all the eluted fractions, assessed the presence of TSG101, calnexin, and cytochrome C by western blot, analyzed nanoparticle size and distribution by tRPS, and morphology by TEM. Finally, we evaluated the immunomodulatory activity in vitro. We found that most EVs are eluted and concentrated in a single peak fraction, with a mean particle size of <150nm and expression of CD9, CD63, CD81, and TSG101 markers. Moreover, sEVs in fraction 4 exerted an anti-inflammatory activity on LPS-stimulated macrophages. In summary, we set up a chromatographic, scalable, and clinically compatible method to isolate and concentrate small EVs from conditioned media, which preserves the EVs biological activity.


Subject(s)
Body Fluids , Extracellular Vesicles , Culture Media, Conditioned/pharmacology , Chromatography, Ion Exchange , Blotting, Western
3.
Cytotherapy ; 24(10): 999-1012, 2022 10.
Article in English | MEDLINE | ID: mdl-35798638

ABSTRACT

BACKGROUND AIMS: Owing to the lack of biological assays, determining the biological activity of extracellular vesicles has proven difficult. Here the authors standardized an in vitro assay to assess the anti-inflammatory activity of mesenchymal stromal cell-derived small extracellular vesicles (MSC-sEVs) based on their ability to prevent acquisition of the M1 phenotype in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Induction of tumor necrosis factor alpha, IL-1ß, IL-6 and inducible nitric oxide synthase (iNOS) characterizes the M1 phenotype. Nitric oxide released by iNOS turns into nitrite, which can be easily quantitated in culture media by Griess reaction. METHODS: The authors first tested different assay conditions in 96-well plates, including two seeding densities (2 × 104 cells/well and 4 × 104 cells/well), four LPS doses (1 ng/mL, 10 ng/mL, 100 ng/mL and 1000 ng/mL) and two time points (16 h and 24 h), in order to determine the best set-up to accurately measure nitrite concentration as an index of M1 macrophage polarization. RESULTS: The authors found that seeding 2 × 104 cells/well and stimulating with 10 ng/mL LPS for 16 h allowed the inhibition of nitrite production by 60% with the use of dexamethasone. Using these established conditions, the authors were able to test different MSC-sEV preparations and generate dose-response curves. Moreover, the authors fully analytically validated assay performance and fulfilled cross-validation against other M1 markers. CONCLUSIONS: The authors standardized a quick, cheap and reproducible in vitro macrophage assay that allows for the evaluation and estimation of the anti-inflammatory activity of MSC-sEVs.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Anti-Inflammatory Agents/pharmacology , Biological Assay , Extracellular Vesicles/metabolism , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Nitric Oxide Synthase Type II/metabolism , Nitrites/metabolism , Reference Standards
4.
Pest Manag Sci ; 77(4): 2068-2077, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33342044

ABSTRACT

BACKGROUND: The Diaporthe/Phomopsis complex (D/P) is a group of soybean seed-borne fungi. The use of chemical fungicides, either for seed treatment or during the crop cycle, is the most adopted practice for treating fungal diseases caused by this complex. Worldwide, there is a search for alternative seed treatments that are less harmful to the environment than chemicals. Non-thermal plasma (NTP) is a novel seed treatment technology for pathogen removal. This research aimed to evaluate the effects of NTP on the in vitro performance of pure cultures of Diaporthe longicolla and elucidate the mechanisms underlying these effects. RESULTS: Active D. longicolla mycelium, growing in vitro, was exposed to different NTP treatments, employing a dielectric barrier discharge arrangement with different carrier gases (N2 or O2 ). Fungal growth, fresh biomass and colony appearance were negatively affected by plasma treatments (TN3 and TO3). Lipid peroxidation and antioxidant activities were higher in plasma-treated colonies comparison with non-exposed colonies (control). Fungal asexual spores (conidia) were also exposed to NTP, showing high susceptibility. CONCLUSION: Exposure of D. longicolla colonies to NTP severely compromised fungal biology. Ozone production during treatment and lipid peroxidation of fungal cell membranes appeared to be involved in the observed effects. © 2020 Society of Chemical Industry.


Subject(s)
Ascomycota , Seeds , Glycine max , Technology
5.
Sci Rep ; 10(1): 4917, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32188896

ABSTRACT

Soybean (Glycine max (L.) Merrill) is one of the most important crops worldwide providing dietary protein and vegetable oil. Most of the nitrogen required by the crop is supplied through biological N2 fixation. Non-thermal plasma is a fast, economical, and environmental-friendly technology that can improve seed quality, plant growth, and crop yield. Soybean seeds were exposed to a dielectric barrier discharge plasma operating at atmospheric pressure air with superimposed flows of O2 or N2 as carrying gases. An arrangement of a thin phenolic sheet covered by polyester films was employed as an insulating barrier. We focused on the ability of plasma to improve soybean nodulation and biological nitrogen fixation. The total number of nodules and their weight were significantly higher in plants grown from treated seeds than in control. Plasma treatments incremented 1.6 fold the nitrogenase activity in nodules, while leghaemoglobin content was increased two times, indicating that nodules were fixing nitrogen more actively than control. Accordingly, the nitrogen content in nodules and the aerial part of plants increased by 64% and 23%, respectively. Our results were supported by biometrical parameters. The results suggested that different mechanisms are involved in soybean nodulation improvement. Therefore, the root contents of isoflavonoids, glutathione, auxin and cytokinin, and expansin (GmEXP1) gene expression were determined. We consider this emerging technology is a suitable pre-sowing seed treatment.


Subject(s)
Glycine max/physiology , Nitrogen Fixation , Plant Root Nodulation , Plasma Gases , Root Nodules, Plant/physiology , Seeds , Nitrogen/metabolism , Nitrogen Fixation/drug effects , Phenotype , Plant Development , Plant Root Nodulation/drug effects , Plasma Gases/pharmacology , Quantitative Trait, Heritable , Root Nodules, Plant/drug effects , Seeds/drug effects , Glycine max/drug effects
6.
Stem Cells Int ; 2019: 8089215, 2019.
Article in English | MEDLINE | ID: mdl-31481974

ABSTRACT

Lung transplantation is a lifesaving therapy for people living with severe, life-threatening lung disease. The high mortality rate among patients awaiting transplantation is mainly due to the low percentage of lungs that are deemed acceptable for implantation. Thus, the current shortage of lung donors may be significantly reduced by implementing different therapeutic strategies which facilitate both organ preservation and recovery. Here, we studied whether the anti-inflammatory effect of human umbilical cord-derived mesenchymal stem cells (HUCPVCs) increases lung availability by improving organ preservation. We developed a lung preservation rat model that mimics the different stages by which donor organs must undergo before implantation. The therapeutic schema was as follows: cardiac arrest, warm ischemia (2 h at room temperature), cold ischemia (1.5 h at 4°C, with Perfadex), and normothermic lung perfusion with ventilation (Steen solution, 1 h). After 1 h of warm ischemia, HUCPVCs (1 × 106 cells) or vehicle was infused via the pulmonary artery. Physiologic data (pressure-volume curves) were acquired right after the cardiac arrest and at the end of the perfusion. Interestingly, although lung edema did not change among groups, lung compliance dropped to 34% in the HUCPVC-treated group, while the vehicle group showed a stronger reduction (69%, p < 0.0001). Histologic assessment demonstrated less overall inflammation in the HUCPVC-treated lungs. In addition, MPO activity, a neutrophil marker, was reduced by 41% compared with vehicle (p < 0.01). MSC therapy significantly decreased tissue oxidative damage by controlling reactive oxygen species production. Accordingly, catalase and superoxide dismutase enzyme activities remained at baseline levels. In conclusion, these results demonstrate that the anti-inflammatory effect of MSCs protects donor lungs against ischemic injury and postulates MSC therapy as a novel tool for organ preservation.

7.
Int J Mol Sci ; 20(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277213

ABSTRACT

Mechanisms mediating mesenchymal stromal/stem cells' (MSCs) multipotency are unclear. Although the expression of the pluripotency factor OCT4 has been detected in MSCs, whether it has a functional role in adult stem cells is still controversial. We hypothesized that a physiological expression level of OCT4 is important to regulate MSCs' multipotency and trigger differentiation in response to environmental signals. Here, we specifically suppressed OCT4 in MSCs by using siRNA technology before directed differentiation. OCT4 expression levels were reduced by 82% in siOCT4-MSCs, compared with controls. Interestingly, siOCT4-MSCs also presented a hypermethylated OCT4 promoter. OCT4 silencing significantly impaired the ability of MSCs to differentiate into osteoblasts. Histologic and macroscopic analysis showed a lower degree of mineralization in siOCT4-MSCs than in controls. Moreover, OCT4 silencing prevented the up-regulation of osteoblast lineage-associated genes during differentiation. Similarly, OCT4 silencing resulted in decreased MSC differentiation potential towards the adipogenic lineage. The accumulation of lipids was reduced 3.0-fold in siOCT4-MSCs, compared with controls. The up-regulation of genes engaged in the early stages of adipogenesis was also suppressed in siOCT4-MSCs. Our findings provide evidence of a functional role for OCT4 in MSCs and indicate that a basal expression of this transcription factor is essential for their multipotent capacity.


Subject(s)
Adipogenesis , Epigenetic Repression , Mesenchymal Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , Osteogenesis , Animals , DNA Methylation , Mesenchymal Stem Cells/physiology , Mice , Octamer Transcription Factor-3/metabolism , Octamer Transcription Factor-3/physiology , Promoter Regions, Genetic
8.
PLoS One ; 12(12): e0189131, 2017.
Article in English | MEDLINE | ID: mdl-29216265

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are in numerous cell therapy clinical trials, including for injured myocardium. Acquisition of cardiomyocyte characteristics by MSCs may improve cardiac regeneration but the mechanisms regulating this process are unclear. Here, we investigated whether the pluripotency transcription factor OCT4 is involved in the activation of cardiac lineage genetic programs in MSCs. We employed our established co-culture model of MSCs with rat embryonic cardiomyocytes showing co-expression of cardiac markers on MSCs independent of cell fusion. Bone marrow-derived MSCs were isolated from transgenic mice expressing GFP under the control of the cardiac-specific α-myosin heavy chain promoter. After 5 days of co-culture, MSCs expressed cardiac specific genes, including Nkx2.5, atrial natriuretic factor and α-cardiac actin. The frequency of GFP+ cells was 7.6±1.9%, however, these cells retained the stromal cell phenotype, indicating, as expected, only partial differentiation. Global OCT4 expression increased 2.6±0.7-fold in co-cultured MSCs and of interest, 87±5% vs 79±4% of MSCs expressed OCT4 by flow cytometry in controls and after co-culture, respectively. Consistent with the latter observation, the GFP+ cells did not express nuclear OCT4 and showed a significant increase in OCT4 promoter methylation compared with undifferentiated MSCs (92% vs 45%), inferring that OCT4 is regulated by an epigenetic mechanism. We further showed that siRNA silencing of OCT4 in MSCs resulted in a reduced frequency of GFP+ cells in co-culture to less than 1%. Our data infer that OCT4 expression may have a direct effect on partial cardiomyocyte reprogramming of MSCs and suggest a new mechanism(s) associated with MSC multipotency and a requirement for crosstalk with the cardiac microenvironment.


Subject(s)
Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Octamer Transcription Factor-3/genetics , Animals , Cells, Cultured , Coculture Techniques , DNA Methylation , Mice , Promoter Regions, Genetic , Rats
9.
Redox Biol ; 12: 549-557, 2017 08.
Article in English | MEDLINE | ID: mdl-28384610

ABSTRACT

Heme oxygenase-1 (HO-1) plays a protective role against oxidative stress in plants. The mechanisms regulating its expression, however, remain unclear. Here we studied the methylation state of a GC rich HO-1 promoter region and the expression of several stress-related transcription factors (TFs) in soybean plants subjected to ultraviolet-B (UV-B) radiation. Genomic DNA and total RNA were isolated from leaves of plants irradiated with 7.5 and 15kJm-2 UV-B. A 304bp HO-1 promoter region was amplified by PCR from sodium bisulfite-treated DNA, cloned into pGEMT plasmid vector and evaluated by DNA sequencing. Bisulfite sequencing analysis showed similar HO-1 promoter methylation levels in control and UV-B-treated plants (C: 3.4±1.3%; 7.5: 2.6±0.5%; 15: 3.1±1.1%). Interestingly, HO-1 promoter was strongly unmethylated in control plants. Quantitative RT-PCR analysis of TFs showed that GmMYB177, GmMYBJ6, GmWRKY21, GmNAC11, GmNAC20 and GmGT2A but not GmWRK13 and GmDREB were induced by UV-B radiation. The expression of several TFs was also enhanced by hemin, a potent and specific HO inducer, inferring that they may mediate HO-1 up-regulation. These results suggest that soybean HO-1 gene expression is not epigenetically regulated. Moreover, the low level of HO-1 promoter methylation suggests that this antioxidant enzyme can rapidly respond to environmental stress. Finally, this study has identified some stress-related TFs involved in HO-1 up-regulation under UV-B radiation.


Subject(s)
Glycine max/radiation effects , Heme Oxygenase (Decyclizing)/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Up-Regulation , DNA Methylation , Epigenesis, Genetic/radiation effects , Gene Expression Regulation, Plant/radiation effects , Oxidative Stress , Plant Leaves/genetics , Plant Leaves/radiation effects , Promoter Regions, Genetic/radiation effects , Sequence Analysis, DNA , Glycine max/genetics
10.
J Photochem Photobiol B ; 141: 202-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25463668

ABSTRACT

Antioxidant enzymes play a key role in plant tolerance to different types of stress, including ultraviolet-B (UV-B) radiation. Here we report that nitric oxide (NO) enhances antioxidant enzymes gene expression and increases the activity of specific isoforms protecting against UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented lipid peroxidation, ion leakage and H2O2 and superoxide anion accumulation in leaves of UV-B-treated soybean plants. Transcripts levels of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) were significantly induced by SNP. These data correlated with the enhancement of particular antioxidant enzyme isoforms, such as one CAT isoform and two APX isoforms. Moreover, SNP induced the expression of three new isoforms of SOD, identified as Mn-SOD subclass. Further results showed that total activities of SOD, CAT and APX significantly increased by 2.2-, 1.8- and 2.1-fold in SNP-treated plants compared to controls, respectively. The protective effect of SNP against UV-B radiation was negated by addition of the specific NO scavenger cPTIO, indicating that NO released by SNP mediates the enhancement of antioxidant enzymes activities. In conclusion, NO is involved in the signaling pathway that up-regulates specific isoforms of antioxidant enzymes protecting against UV-B-induced oxidative stress.


Subject(s)
Glycine max/metabolism , Nitric Oxide/metabolism , Ultraviolet Rays , Ascorbate Peroxidases/genetics , Ascorbate Peroxidases/metabolism , Catalase/genetics , Catalase/metabolism , Hydrogen Peroxide/metabolism , Nitroprusside/chemistry , Nitroprusside/pharmacology , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/radiation effects , Protein Isoforms/genetics , Protein Isoforms/metabolism , Glycine max/drug effects , Glycine max/radiation effects , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism , Up-Regulation/drug effects , Up-Regulation/radiation effects
11.
Redox Rep ; 19(6): 242-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25156196

ABSTRACT

Objectives This study was focused on the role of indole acetic acid (IAA) in the defense against oxidative stress damage caused by drought in soybean plants and to elucidate whether heme oxygenase-1 (HO-1) and nitric oxide (NO) are involved in this mechanism. IAA is an auxin that participates in many plant processes including oxidative stress defense, but to the best of our knowledge no information is yet available about its possible action in drought stress. Methods To this end, soybean plants were treated with 8% polyethylene glycol (PEG) or 100 µM IAA. To evaluate the behavior of IAA, plants were pretreated with this compound previous to PEG addition. Lipid peroxidation levels (thiobarbituric acid reactive substances (TBARS)), glutathione (GSH) and ascorbate (AS) contents, catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (POD) activities were determined to evaluate oxidative damage. Results Drought treatment (8% PEG) caused a significant increase in TBARS levels as well as a marked decrease in the non-enzymatic (GSH and AS) and enzymatic (CAT, SOD, and POD) antioxidant defense systems. Pre-treatment with IAA prevented the alterations of stress parameters caused by drought, while treatment with IAA alone did not produce changes in TBARS levels, or GSH and AS contents. Moreover, the activities of the classical enzymes involved in the enzymatic defense system (SOD, CAT, and POD) remained similar to control values. Furthermore, this hormone could enhance HO-1 activity (75% with respect to controls), and this increase was positively correlated with protein content as well as gene expression. The direct participation of HO-1 as an antioxidant enzyme was established by performing experiments in the presence of Zn-protoporphyrin IX, a well-known irreversible inhibitor of this enzyme. It was also demonstrated that HO-1 is modulated by NO, as shown by experiments performed in the presence of an NO donor (sodium nitroprusside), an NO scavenger (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), or an NO synthesis inhibitor (N-nitro-l-arginine methyl ester, NAME). Discussion It is concluded that IAA is responsible, at least in part, for the protection against oxidative stress caused by drought in soybean plants through the modulation of NO levels which, in turn, enhances HO-1 synthesis and activity.


Subject(s)
Glycine max/chemistry , Heme Oxygenase (Decyclizing)/metabolism , Indoleacetic Acids/chemistry , Oxidative Stress , Antioxidants/metabolism , Ascorbic Acid/metabolism , Droughts , Glutathione/metabolism , Indoleacetic Acids/metabolism , Lipid Peroxidation , Nitric Oxide/metabolism , Polyethylene Glycols/chemistry , Glycine max/enzymology , Stress, Physiological , Thiobarbituric Acid Reactive Substances/metabolism
12.
Redox Rep ; 16(2): 49-55, 2011.
Article in English | MEDLINE | ID: mdl-21722412

ABSTRACT

We have previously demonstrated that the induction of heme oxygenase-1 (HO-1) (EC 1.14.99.3) plays a protective role against oxidative stress in leaves and nodules of soybean plants subjected to cadmium, UV-B radiation, and salt stress. Here, we investigated HO-1, localization and their relationship with oxidative stress in different growth stages of soybean plants roots inoculated with Bradyrhizobium japonicum (3, 5, 7, 10, and 20 days post-inoculation) and nodules. After 7 days of inoculation, we observed a 70% increase in thiobarbituric acid-reactive substances that correlates with an enhancement in the gene expression of HO-1, catalase, and superoxide dismutase. Furthermore, the inhibition of HO-1 activity by Zn-protoporphyrin IX produced an increase in lipid peroxidation and a decrease in glutathione content suggesting that, in this symbiotic process, HO-1 may act as a signal molecule that protects the root against oxidative stress. We determined, for the first time, the tissular localization of HO-1 in nodules by electron-microscope examination. These results undoubtedly demonstrated that this enzyme is localized only in the plant tissue and its overexpression may play an important role as antioxidant defense in the plant. Moreover, we demonstrate that, in roots, HO-1 is induced by oxidative stress produced by inoculation of B. japonicum and exerts an antioxidant response against it.


Subject(s)
Bradyrhizobium/enzymology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Glycine max/enzymology , Heme Oxygenase-1/metabolism , Oxidative Stress , Symbiosis , Bradyrhizobium/drug effects , Catalase/genetics , Catalase/metabolism , Glutathione/metabolism , Heme Oxygenase-1/genetics , Immunoenzyme Techniques , Lipid Peroxidation/drug effects , Photosensitizing Agents/pharmacology , Plant Roots/cytology , Plant Roots/drug effects , Plant Roots/metabolism , Protoporphyrins/pharmacology , RNA, Messenger/genetics , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Salts/pharmacology , Glycine max/drug effects , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
13.
Pharmacology ; 87(5-6): 341-9, 2011.
Article in English | MEDLINE | ID: mdl-21646819

ABSTRACT

Heme oxygenase (HO) is an enzyme that is involved in numerous secondary actions. One of its products, CO, seems to have an important but unclear role in blood pressure regulation. CO exhibits a vasodilator action through the activation of soluble guanylate cyclase and the subsequent production of cyclic guanosine monophosphate (cGMP). The aim of the present study was to determine whether pathological and pharmacological HO-1 overexpression has any regulatory role on blood pressure in a renovascular model of hypertension. We examined the effect of zinc protoporyphyrin IX (ZnPP-IX) administration, an inhibitor of HO activity, on mean arterial pressure (MAP) and heart rate in sham-operated and aorta-coarcted (AC) rats and its interaction with the nitric oxide synthase (NOS) pathway. Inhibition of HO increased MAP in normotensive rats with and without hemin pretreatment but not in hypertensive rats. Pretreatment with NG-nitro-L-arginine methyl ester blocked the pressor response to ZnPP-IX, suggesting a key role of NOS in the cardiovascular action of HO inhibition. In the same way, AC rats, an experimental model of hypertension with impaired function and low expression of endothelial NOS (eNOS), did not show any cardiovascular response to inhibition or induction of HO. This finding suggests that eNOS was necessary for modulating the CO response in the hypertensive group. In conclusion, the present study suggests that HO regulates blood pressure through CO only when the NOS pathway is fully operative. In addition, chronic HO induction fails to attenuate the hypertensive stage induced by coarctation as a consequence of the impairment of the NOS pathway.


Subject(s)
Heme Oxygenase-1/biosynthesis , Hypertension/enzymology , Nitric Oxide Synthase/metabolism , Animals , Aorta/drug effects , Aorta/metabolism , Blood Pressure/drug effects , Carbon Monoxide/pharmacology , Cyclic GMP/metabolism , Guanylate Cyclase/metabolism , Heart Rate/drug effects , Heme Oxygenase-1/antagonists & inhibitors , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Hemin/metabolism , Hypertension/genetics , Hypertension/metabolism , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Protoporphyrins/pharmacology , Rats , Rats, Wistar , Receptors, Cytoplasmic and Nuclear/metabolism , Soluble Guanylyl Cyclase
14.
Phytochemistry ; 71(14-15): 1700-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20708206

ABSTRACT

Heme oxygenase (HO) has antioxidant properties and is up-regulated by reactive oxygen species (ROS) in ultraviolet-B-irradiated soybean plants. This study shows that nitric oxide (NO) protects against oxidative damage and that nitric oxide synthase (NOS)-like activity is also required for HO-1 induction under UV-B radiation. Pre-treatments with sodium nitroprussiate (SNP), a NO-donor, prevented chlorophyll loss, H(2)O(2) and O(2)(*-) accumulation, and ion leakage in UV-B-treated plants. HO activity was significantly enhanced by NO and showed a positive correlation with HO-1 transcript levels. In fact, HO-1 mRNA levels were increased 2.1-fold in 0.8 mM SNP-treated plants, whereas subsequent UV-B irradiation augmented this expression up to 3.5-fold with respect to controls. This response was not observed using ferrocyanide, a SNP inactive analog, and was effectively blocked by 2-(4-carboxyphenil)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a specific NO-scavenger. In addition, experiments carried out in the presence of N(G)-nitro-L-arginine methyl ester (L-NAME) or tungsten, well-known inhibitors of NOS and nitrate reductase, showed that NOS is the endogenous source of NO that mediates HO-1 expression. In summary, we found that NO is involved in the signaling pathway leading to HO-1 up-regulation under UV-B, and that a balance between NO and ROS is important to trigger the antioxidant response against oxidative stress.


Subject(s)
Glycine max/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Nitric Oxide Synthase/metabolism , Nitric Oxide/biosynthesis , Ultraviolet Rays , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll/radiation effects , Heme Oxygenase (Decyclizing)/radiation effects , Hydrogen Peroxide/analysis , NG-Nitroarginine Methyl Ester/chemistry , Nitric Oxide Synthase/radiation effects , Oxidative Stress/radiation effects , Plant Leaves/chemistry , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism , Glycine max/genetics , Glycine max/radiation effects , Thiobarbituric Acid Reactive Substances/analysis
15.
Regul Pept ; 156(1-3): 28-33, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19445972

ABSTRACT

This study was performed to provide insight into the regulatory role of angiotensin II and arterial pressure on the activity of antioxidant enzymes and oxidative stress generation in the hypertensive kidney from an experimental animal model of renovascular hypertension. Aortic coarcted and sham-operated rats received vehicle, losartan or minoxidil in their drinking water. After 7 d of treatment rats were sacrificed; hypertensive kidneys were excised, and the NAD(P)H oxidase subunits expression, TBARS production, glutathione level and the activity of heme oxygenase-1 and classical antioxidant enzymes, were evaluated. Losartan administration significantly reduced oxidative stress generation decreasing NAD(P)H oxidase expression, independently of the drop in arterial pressure. On the other hand, antioxidant enzymes were regulated by arterial pressure and they were not implicated in kidney protection against oxidative damage. Findings here reported strongly suggest that clinical therapeutics with the Ang II type 1 receptor blocker prevents oxidative stress generation and may attenuate the kidney oxidative damage in the renovascular hypertension. We hypothesize that the pathway followed by the Ang II blocker to achieve this renoprotection, though independent of the primary antioxidant enzymatic system, depends on NAD(P)H oxidase downregulation.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Blood Pressure/drug effects , Down-Regulation/drug effects , Kidney/drug effects , Kidney/metabolism , Losartan/pharmacology , NADPH Oxidases/metabolism , Animals , Blotting, Western , Glutathione/metabolism , Heme Oxygenase-1/metabolism , Hydrogen Peroxide/metabolism , Hypertension, Renovascular/drug therapy , In Vitro Techniques , Lipid Peroxidation/drug effects , Male , Oxidative Stress/drug effects , Rats , Rats, Wistar
16.
Int J Cell Biol ; 2009: 848516, 2009.
Article in English | MEDLINE | ID: mdl-20130761

ABSTRACT

Plants are frequently subjected to different kinds of stress, such as salinity and, like other organisms, they have evolved strategies for preventing and repairing cellular damage caused by salt stress. Glycine max L. plants were subjected to different NaCl concentrations (0-200 mM) for 10 days. Treatments with 100 and 200 mM NaCl induced ion leakage and lipid peroxidation augmentation, loss in chlorophyll content, and accumulation of O(2) (*-) and H(2)O(2). However, 50 mM NaCl did not modify these parameters, which remains similar to control values. Catalase, superoxide dismutase, and heme oxygenase (HO-1) activities and gene expressions were increased under 100 mM NaCl, while no differences were observed with respect to controls under 50 mM salt. Treatment with 200 mM NaCl caused a diminution in the enzyme activities and gene expressions. Results here reported let us conclude that HO also plays a leading role in the defense mechanisms against salinity.

17.
Phytochemistry ; 68(4): 505-12, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17174990

ABSTRACT

The behavior of glutathione reductase (GR, EC 1.6.4.2) activity and isoforms were analyzed in wheat (Triticum aestivum L.) leaves and roots exposed to a chronic treatment with a toxic cadmium (Cd) concentration. A significant growth inhibition (up to 55%) was found in leaves at 7, 14 and 21 days, whereas roots were affected (51%) only after three weeks. Wheat plants grown in the presence of 100microM Cd showed a time-dependent accumulation of this metal, with Cd concentration being 10-fold higher in roots than in leaves. Nevertheless, lipid peroxidation was augmented in leaves in all experiments, but not in roots until 21 days. Cadmium treatment altered neither the GR activity nor the isoform pattern in the leaves. However, GR activity increased 111% and 200% in roots at 7 and 14 days, respectively, returning to control levels after 21 days. Three GR isoforms were found in roots of control and treated plants, two of which were enhanced by Cd treatment at 7 and 14 days, as assessed by activity staining on native gels. The changes in the isoform pattern modified the global kinetic properties of GR, thereby decreasing significantly (2.5-fold) the Michaelis constant (K(m)) value for oxidized glutathione. Isozyme induction was not associated with an enhancement of GR mRNA and protein expression, indicating that post-translational modification could occur. Our data demonstrated that up-regulation of GR activity by the induction of distinctive isoforms occurs as a defense mechanism against Cd-generated oxidative stress in roots.


Subject(s)
Cadmium/toxicity , Glutathione Reductase/metabolism , Isoenzymes/metabolism , Plant Leaves/enzymology , Plant Roots/enzymology , Triticum/enzymology , DNA Primers , Glutathione Reductase/genetics , Isoenzymes/genetics , Kinetics , Plant Leaves/drug effects , Plant Proteins/metabolism , Plant Roots/drug effects , RNA, Messenger/genetics , RNA, Plant/genetics , Reverse Transcriptase Polymerase Chain Reaction , Time Factors , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...