Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 40(27): 3561-3567, 2019 Nov.
Article in English | MEDLINE | ID: mdl-29806791

ABSTRACT

From the environmental and end-users' viewpoints, electrospun ion exchange fibres provide highly efficient and sustainable material for separation of for example trace pollutants, such as radionuclides and heavy metals. This work aimed to reduce the amount of ion exchange material needed per unit volume of raw material subjected to an ion exchange process. We present a very simple process to electrospinning of sodium titanate fibres, but also test results of ion exchange kinetics measurements. Sodium titanate fibres are very promising material and it is possible that by exploiting electrospun inorganic sub-micron fibres the ion exchanger mass required for a given capacity can be decreased significantly.


Subject(s)
Metals, Heavy , Water Purification , Oxides , Titanium
2.
Colloids Surf B Biointerfaces ; 135: 774-783, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26342323

ABSTRACT

Electrospinning is a method to produce lightweight, resorbable and bioinspired scaffolds for tissue engineering. Here we investigated the influence of electrospun hydroxyapatite fibers (HA) on macrophages and osteoclasts. A mouse macrophage cell line (RAW 264.7) and human bone marrow derived primary osteoclasts (hOC) were cultured with electrospun HA fibers embedded in Matrigel. Cell morphology and the secretion of pro-inflammatory cytokines (IL-6 and TNF-α) were analyzed using macrophages. Both fluorescent microscopy and scanning electron microscopy indicated that the cell morphology differed on the various materials (HA fibers on Matrigel, pure Matrigel and a glass control). Control macrophages were activated with bacterial lipopolysaccharide (LPS) but electrospun HA did not provoke an inflammatory response. Cytokine secretion detected with enzyme-linked immunosorbent assay (ELISA) also supported this observation. LPS, but not HA fibers, stimulated TNF-α and IL-6 secretion by macrophages at the 2 day time point. After 4 days in culture there was an increasing trend in cytokine secretion in the HA fiber samples. Human bone marrow myeloid precursor cells were able to fuse and differentiate on the fibrous mineral scaffold to form functional multinuclear osteoclasts that were able to resorb the HA nanofibers. This indicates that osteoclasts do not necessarily need a continuous bone surface but osteoclast ruffled border membranes can form a resorption interface with a fibrous mineral scaffold.


Subject(s)
Durapatite/chemistry , Osteoclasts/cytology , Animals , Cell Line , Enzyme-Linked Immunosorbent Assay , Humans , Interleukin-6/metabolism , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Tumor Necrosis Factor-alpha/metabolism , X-Ray Diffraction
3.
Nanotechnology ; 26(2): 025301, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25513842

ABSTRACT

A needleless electrospinning setup named 'Needleless Twisted Wire Electrospinning' was developed. The polymer solution is electrospun from the surface of a twisted wire set to a high voltage and collected on a cylindrical collector around the wire. Multiple Taylor cones are simultaneously self-formed on the downward flowing solution. The system is robust and simple with no moving parts aside from the syringe pump used to transport the solution to the top of the wire. The structure and process parameters of the setup and the results on the preparation of polyvinyl pyrrolidone (PVP), hydroxyapatite (HA) and bioglass fibers with the setup are presented. PVP fiber sheets with areas of 40 × 120 cm(2) and masses up to 1.15 g were prepared. High production rates of 5.23 g h(-1) and 1.40 g h(-1) were achieved for PVP and HA respectively. The major limiting factor of the setup is drying of the polymer solution on the wire during the electrospinning process which will eventually force to interrupt the process for cleaning of the wire. Possible solutions to this problem and other ways to develop the setup are discussed. The presented system provides a simple way to increase the production rate and area of fiber sheet as compared with the conventional needle electrospinning.

4.
Mater Sci Eng C Mater Biol Appl ; 45: 469-76, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25491852

ABSTRACT

Calcium carbonate (CaCO3) fibers were prepared by electrospinning followed by annealing. Solutions consisting of calcium nitrate tetrahydrate (Ca(NO3)2·4H2O) and polyvinylpyrrolidone (PVP) dissolved in ethanol or 2-methoxyethanol were used for the fiber preparation. By varying the precursor concentrations in the electrospinning solutions CaCO3 fibers with average diameters from 140 to 290 nm were obtained. After calcination the fibers were identified as calcite by X-ray diffraction (XRD). The calcination process was studied in detail with high temperature X-ray diffraction (HTXRD) and thermogravimetric analysis (TGA). The initially weak fiber-to-substrate adhesion was improved by adding a strengthening CaCO3 layer by spin or dip coating Ca(NO3)2/PVP precursor solution on the CaCO3 fibers followed by annealing of the gel formed inside the fiber layer. The CaCO3 fibers were converted to nanocrystalline hydroxyapatite (HA) fibers by treatment in a dilute phosphate solution. The resulting hydroxyapatite had a plate-like crystal structure with resemblance to bone mineral. The calcium carbonate and hydroxyapatite fibers are interesting materials for bone scaffolds and bioactive coatings.


Subject(s)
Calcium Carbonate/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Calcium Compounds/chemistry , Coated Materials, Biocompatible/chemistry , Crystallization , Ethylene Glycols , Nitrates/chemistry , Thermogravimetry , X-Ray Diffraction/methods
5.
Biointerphases ; 9(3): 031008, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25280849

ABSTRACT

Nanocrystalline hydroxyapatite thin films were fabricated on silicon and titanium by atomic layer deposition (ALD) of CaCO3 and its subsequent conversion to hydroxyapatite by diammonium hydrogen phosphate (DAP) solution. The effects of conversion process parameters to crystallinity and morphology of the films were examined. DAP concentration was found to be critical in controlling the crystal size and homogeneity of the films. The hydroxyapatite phase was identified by XRD. ToF-elastic recoil detection analysis studies revealed that the films are calcium deficient in relation to hydroxyapatite with a Ca/P ratio of 1.39 for films converted with 0.2 M DAP at 95 °C. The coatings prepared on titanium conformally follow the rough surface topography of the substrate, verifying that the good step coverage of the ALD method was maintained in the conversion process. The dissolution tests revealed that the coating was nondissolvable in the cell culture medium. Annealing the coated sample at 700 °C for 1 h seemed to enhance its bonding properties to the substrate. Also, the biocompatibility of the coatings was confirmed by human bone marrow derived cells in vitro. The developed method provides a new possibility to produce thin film coatings on titanium implants with bone-type hydroxyapatite that is biocompatible with human osteoblasts and osteoclasts.


Subject(s)
Calcium Carbonate/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Humans , Phosphates/chemistry , Solubility , X-Ray Diffraction
6.
J Nanosci Nanotechnol ; 11(9): 8101-7, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22097537

ABSTRACT

The surface roughness of thin films is an important parameter related to the sticking behaviour of surfaces in the manufacturing of microelectomechanical systems (MEMS). In this work, TiO2 films made by atomic layer deposition (ALD) with the TiCl4-H2O process were characterized for their growth, roughness and crystallinity as function of deposition temperature (110-300 degrees C), film thickness (up to approximately 100 nm) and substrate (thermal SiO2, RCA-cleaned Si, Al2O3). TiO2 films got rougher with increasing film thickness and to some extent with increasing deposition temperature. The substrate drastically influenced the crystallization behaviour of the film: for films of about 20 nm thickness, on thermal SiO2 and RCA-cleaned Si, anatase TiO2 crystal diameter was about 40 nm, while on Al2O3 surface the diameter was about a micrometer. The roughness could be controlled from 0.2 nm up to several nanometers, which makes the TiO2 films candidates for adhesion engineering in MEMS.

7.
Nanotechnology ; 20(3): 035602, 2009 Jan 21.
Article in English | MEDLINE | ID: mdl-19417297

ABSTRACT

A versatile synthesis procedure for composite nanofibers, combining electrospinning and atomic layer deposition (ALD), is presented. Both solid core/sheath nanofibers and nanoparticle loaded nanotubes can be made, depending on the order of calcination of the electrospun fiber and the ALD process. Magnetic and photocatalytic nanofibers prepared this way can be recycled readily by collecting with a magnet.

SELECTION OF CITATIONS
SEARCH DETAIL
...