Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 31(23): 6986-95, 2003 Dec 01.
Article in English | MEDLINE | ID: mdl-14627831

ABSTRACT

The structure and thermal stability of a hetero chiral decaoligodeoxyribonucleotide duplex d(C1m8 G2C3G4C5LG6LC7G8C9G10)d(C11m8G12C13G14C15LG16LC17G18C19G20) (O1) with two contiguous pairs of enantiomeric 2'-deoxy-L-ribonucleotides (C5LG6L/C15LG16L) at its centre and an 8-methylguanine at position 2/12 was analysed by circular dichroism, NMR and molecular modelling. O1 resolves in a left-handed helical structure already at low salt concentration (0.1 M NaCl). The central L2-sugar portion assumes a B* left-handed conformation (mirror-image of right-handed B-DNA) while its flanking D4-sugar portions adopt the known Z left-handed conformation. The resulting Z4-B2*-Z4 structure (left-handed helix) is the reverse of that of B4-Z2*-B4 (right-handed helix) displayed by the nearly related decaoligodeoxyribonucleotide d(mC1G2mC3G4C5L G6LmC7G8mC9G10)2, at the same low salt concentration (0.1 M NaCl). In the same experimental conditions, d(C1m8G2C3G4C5G6C7G8C9G10)2 (O2), the stereoregular version of O1, resolves into a right-handed B-DNA helix. Thus, both the 8-methylguanine and the enantiomeric step CLpGL at the centre of the molecule are needed to induce left-handed helicity. Remarkably, in the various heterochiral decaoligodeoxyribonucleotides so far analysed by us, when the central CLpGL adopts the B* (respectively Z*) conformation, then the adjacent steps automatically resolves in the Z (respectively B) conformation. This allows a good optimisation of the base-base stackings and base-sugar van der Waals interactions at the ZB*/B*Z (respectively BZ*/Z*B) junctions so that the Z4-B2*-Z4 (respectively B4-Z2*-B4) helix displays a Tm (approximately 65 degrees C) that is only 5 degrees C lower than the one of its homochiral counterpart. Here we anticipate that a large variety of DNA helices can be generated at low salt concentration by manipulating internal factors such as sugar configuration, duplex length, nucleotide composition and base methylation. These helices can constitute powerful tools for structural and biological investigations, especially as they can be used in physiological conditions.


Subject(s)
DNA, Z-Form/chemistry , DNA, Z-Form/genetics , Guanine/analogs & derivatives , Guanine/metabolism , Nucleotides/metabolism , Base Sequence , Circular Dichroism , DNA, Z-Form/metabolism , Guanine/chemistry , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation/drug effects , Nucleic Acid Conformation/radiation effects , Nucleic Acid Denaturation/radiation effects , Nucleotides/chemistry , Osmolar Concentration , Sodium Chloride/pharmacology , Temperature , Thermodynamics , Ultraviolet Rays
2.
Proc Natl Acad Sci U S A ; 100(15): 8880-5, 2003 Jul 22.
Article in English | MEDLINE | ID: mdl-12840147

ABSTRACT

Human defensins form a family of small, cationic, and Cys-rich antimicrobial proteins that play important roles in innate immunity against invading microbes. They also function as effective immune modulators in adaptive immunity by selectively chemoattracting T lymphocytes and immature dendritic cells. On the basis of sequence homology and the connectivity of six conserved Cys residues, human defensins are classified into alpha and beta families. Structures of several beta-defensins have recently been characterized, confirming the disulfide connectivity conserved within the family, i.e., Cys1-Cys5, Cys2-Cys4, and Cys3-Cys6. We found that human beta-defensin 3 (hBD3), a recently described member of the growing beta family, did not fold preferentially into a native conformation in vitro under various oxidative conditions. Using the orthogonal protection of Cys1-Cys5 and of Cys1-Cys6, we chemically synthesized six topological analogs of hBD3 with predefined disulfide connectivities, including the (presumably) native beta pairing. Unexpectedly, all differently folded hBD3 species exhibited similar antimicrobial activity against Escherichia coli, whereas a wide range of chemotactic activities was observed with these analogs for monocytes and cells transfected by the chemokine receptor CCR6. Furthermore, whereas substitution of all Cys residues by alpha-aminobutyric acid completely abolished the chemotactic activity of hBD3, the bactericidal activity remained unaffected in the absence of any disulfide bridge. Our findings demonstrate that disulfide bonding in hBD3, although required for binding and activation of receptors for chemotaxis, is fully dispensable for its antimicrobial function, thus shedding light on the mechanisms of action for human beta-defensins and the design of novel peptide antibiotics.


Subject(s)
beta-Defensins/chemistry , beta-Defensins/physiology , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Chemotactic Factors/chemistry , Chemotactic Factors/genetics , Chemotactic Factors/pharmacology , Chemotactic Factors/physiology , Chemotaxis, Leukocyte/drug effects , Cysteine/chemistry , Disulfides/chemistry , Drug Design , Escherichia coli/drug effects , Humans , In Vitro Techniques , Molecular Sequence Data , Protein Engineering , Protein Folding , Sequence Homology, Amino Acid , beta-Defensins/genetics , beta-Defensins/pharmacology
3.
J Mol Recognit ; 16(3): 131-8, 2003.
Article in English | MEDLINE | ID: mdl-12833568

ABSTRACT

Src homology-3 (SH3) domains mediate important protein-protein interactions in a variety of normal and pathological cellular processes, thus providing an attractive target for the selective interference of SH3-dependent signaling events that govern these processes. Most SH3 domains recognize proline-rich peptides with low affinity and poor selectivity, and the goal to design potent and specific ligands for various SH3 domains remains elusive. Better understanding of the molecular basis for SH3 domain recognition is needed in order to design such ligands with potency and specificity. In this report, we seek to define a clear recognition preference of the specificity pocket of the Abl SH3 domain using targeted synthetic peptide libraries. High-resolution affinity panning coupled with mass spectrometric readout allows for quick identification of Trp as the preferred fourth residue in the decapeptide ligand APTWSPPPPP, which binds to Abl SH3 four times stronger than does the decapeptide containing Tyr or Phe in the fourth position. This finding is in contrast to several reports that Tyr is the only residue selected from phage displayed peptide libraries that interacts with the specificity pocket of Abl SH3. This simple, unbiased approach can fine-tune the affinity and selectivity of both natural and unnatural SH3 ligands whose consensus binding sequence has been pre-defined by combinatorial library methods.


Subject(s)
Proto-Oncogene Proteins c-abl/chemistry , Proto-Oncogene Proteins c-abl/metabolism , src Homology Domains , Chromatography, Affinity , Ligands , Models, Molecular , Peptide Library , Protein Binding , Protein Folding , Structure-Activity Relationship , Substrate Specificity , Titrimetry
4.
Protein Expr Purif ; 29(2): 185-92, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12767808

ABSTRACT

Selective incorporation of non-natural amino acid residues into proteins is a powerful approach to delineate structure-function relationships. Although many methodologies are available for chemistry-based protein engineering, more facile methods are needed to make this approach suitable for routine laboratory practice. Here, we describe a new strategy and provide a proof of concept for engineering semi-synthetic proteins. We chose a serine protease Streptomyces griseus trypsin (SGT) for this study to show that it is possible to efficiently couple a synthetic peptide containing a catalytically critical residue to a recombinant fragment containing the other active site residues. The 223-residue hybrid SGT molecule was prepared by fusing a chemically synthesized N-terminal peptide to a large C-terminal fragment of recombinant origin using native chemical ligation. This C-terminal polypeptide was produced from full-length SGT by cyanogen bromide cleavage at a genetically engineered Met57 position. This semi-synthetic hybrid trypsin is fully active, showing kinetics identical to the wild-type enzyme. Thus, we believe that it is an ideal model enzyme for studying the catalytic mechanisms of serine proteases by providing a straightforward approach to incorporate non-natural amino acids in the N-terminal region of the protein. In particular, this strategy will allow for replacement of the catalytic His57 residue and the buried N-terminus, which is thought to help align the active site, with synthetic analogs. Our approach relies on readily available recombinant proteins and small synthetic peptides, thus having general applications in chemical engineering of large proteins where the N-terminal region is the focal interest.


Subject(s)
Trypsin/biosynthesis , Trypsin/chemical synthesis , Amino Acid Sequence , Cloning, Molecular , Cyanogen Bromide/chemistry , Kinetics , Molecular Sequence Data , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemical synthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , Streptomyces griseus/enzymology , Trypsin/genetics , Trypsin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...