Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(20): 11438-11451, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728027

ABSTRACT

The spreading awareness of the health benefits associated with the consumption of plant-based foods is fueling the market of innovative vegetable products, including microgreens, recognized as a promising source of bioactive compounds. To evaluate the potential of oleaginous plant microgreens as a source of bioactive fatty acids, gas chromatography-mass spectrometry was exploited to characterize the total fatty acid content of five microgreens, namely, chia, flax, soy, sunflower, and rapeseed (canola). Chia and flax microgreens appeared as interesting sources of α-linolenic acid (ALA), with total concentrations of 2.6 and 2.9 g/100 g of dried weight (DW), respectively. Based on these amounts, approximately 15% of the ALA daily intake recommended by the European Food Safety Authority can be provided by 100 g of the corresponding fresh products. Flow injection analysis with high-resolution Fourier transform single and tandem mass spectrometry enabled a semi-quantitative profiling of triacylglycerols (TGs) and sterol esters (SEs) in the examined microgreen crops, confirming their role as additional sources of fatty acids like ALA and linoleic acid (LA), along with glycerophospholipids. The highest amounts of TGs and SEs were observed in rapeseed and sunflower microgreens (ca. 50 and 4-5 µmol/g of DW, respectively), followed by flax (ca. 20 and 3 µmol/g DW). TG 54:9, 54:8, and 54:7 prevailed in the case of flax and chia, whereas TG 54:3, 54:4, and 54:5 were the most abundant TGs in the case of rapeseed. ß-Sitosteryl linoleate and linolenate were generally prevailing in the SE profiles, although campesteryl oleate, linoleate, and linolenate exhibited a comparable amount in the case of rapeseed microgreens.


Subject(s)
Gas Chromatography-Mass Spectrometry , Lipidomics , Gas Chromatography-Mass Spectrometry/methods , Lipidomics/methods , Lipids/analysis , Lipids/chemistry , Fatty Acids/analysis , Fatty Acids/chemistry , Flax/chemistry , Vegetables/chemistry , Mass Spectrometry/methods , Triglycerides/analysis , Triglycerides/chemistry
2.
J Am Soc Mass Spectrom ; 33(11): 2108-2119, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36264209

ABSTRACT

An analytical approach based on reversed-phase liquid chromatography coupled to electrospray ionization Fourier-transform mass spectrometry in negative ion mode (RPLC-ESI-(-)-FTMS) was developed for the untargeted characterization of glucosinolates (GSL) in the polar extracts of four Brassica microgreen crops, namely, garden cress, rapeseed, kale, and broccoli raab. Specifically, the all ion fragmentation (AIF) operation mode enabled by a quadrupole-Orbitrap mass spectrometer, i.e., the systematic fragmentation of all ions generated in the electrospray source, followed by the acquisition of an FTMS spectrum, was exploited. First, the best qualifying product ions for GSL were recognized from higher-energy collisional dissociation (HCD)-FTMS2 spectra of representative standard GSL. Extracted ion chromatograms (EIC) were subsequently obtained for those ions from RPLC-ESI(-)-AIF-FTMS data referred to microgreen extracts, by plotting the intensity of their signals as a function of retention time. The alignment of peaks detected in the EIC traces was finally exploited for the recognition of peaks potentially related to GSL, with the EIC obtained for the sulfate radical anion [SO4]•- (exact m/z 95.9523) providing the highest selectivity. Each putative GSL was subsequently characterized by HCD-FTMS2 analyses and by collisionally induced dissociation (CID) multistage MSn (n = 2, 3) acquisitions based on a linear ion trap mass spectrometer. As a result, up to 27 different GSLs were identified in the four Brassica microgreens. The general method described in this work appears as a promising approach for the study of GSL, known and novel, in plant extracts.


Subject(s)
Brassica , Glucosinolates , Glucosinolates/analysis , Glucosinolates/chemistry , Chromatography, Liquid/methods , Spectrometry, Mass, Electrospray Ionization/methods , Ions/chemistry , Plant Extracts
3.
Antioxidants (Basel) ; 11(4)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35453463

ABSTRACT

The world population is projected to increase to 9.9 billion by 2050 and, to ensure food security and quality, agriculture must sustainably multiply production, increase the nutritional value of fruit and vegetables, and preserve genetic variability. In this work, an Apulian landrace of Cucumis melo L. called "Carosello leccese" was grown in a greenhouse with a soilless technique under light-emitting diodes (LEDs) used as supplementary light system. The obtained results showed that "Carosello leccese" contains up to 71.0 mg·g-1 dried weight (DW) of potassium and several bioactive compounds important for human health such as methyl gallate (35.58 µg·g-1 DW), α-tocopherol (10.12 µg·g-1 DW), and ß-carotene (up to 9.29 µg·g-1 DW under LEDs). In fact, methyl gallate has antioxidative and antiviral effects in vitro and in vivo, tocopherols are well recognized for their effective inhibition of lipid oxidation in foods and biological systems and carotenoids are known to be very efficient physical and chemical quenchers of singlet oxygen. Finally, it was demonstrated that the LEDs' supplementary light did not negatively influence the biochemical profile of the peponids, confirming that it can be considered a valid technique to enhance horticultural production without reducing the content of the bioactive compounds of the fruits.

4.
J Agric Food Chem ; 70(7): 2410-2423, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35144380

ABSTRACT

Microgreens are a special type of vegetal product, born as a culinary novelty (traditionally used to garnish gourmet dishes) and then progressively studied for their potentially high content in nutraceuticals, like polyphenolic compounds, carotenoids, and glucosinolates, also in the perspective of implementing their cultivation in space stations/colonies. Among further potential nutraceuticals of microgreens, lipids have received very limited attention so far. Here, glycerophospholipids contained in microgreens of typical oleaginous plants, namely, soybean, chia, flax, sunflower, and rapeseed, were studied using hydrophilic interaction liquid chromatography (HILIC), coupled to high-resolution Fourier transform mass spectrometry (FTMS) or low-resolution collisionally induced dissociation tandem mass spectrometry (CID-MS2) with electrospray ionization (ESI). Specifically, this approach was employed to obtain qualitative and quantitative profiling of the four main classes of glycerophospholipids (GPL) found in the five microgreens, i.e., phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and phosphatidylinositols (PI). Saturated chains with 16 and 18 carbon atoms and unsaturated 18:X (with X = 1-3) chains emerged as the most common fatty acyl substituents of those GPL; a characteristic 16:1 chain (including a C═C bond between carbon atoms 3 and 4) was also found in some PG species. Among polyunsaturated acyl chains, the 18:3 one, likely referred mainly to α-linolenic acid, exhibited a relevant incidence, with the highest estimated amount (corresponding to 160 mg per 100 g of lyophilized vegetal tissue) found for chia. This outcome opens interesting perspectives for the use of oleaginous microgreens as additional sources of essential fatty acids, especially in vegetarian/vegan diets.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Hydrophobic and Hydrophilic Interactions , Phosphatidylcholines/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
6.
J Mass Spectrom ; 56(10): e4784, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34528340

ABSTRACT

The uncontrolled activation of endogenous enzymes may introduce both qualitative and quantitative artefacts when lipids are extracted from vegetal matrices. In the present study, a method based on hydrophilic interaction liquid chromatography coupled either to high-resolution/accuracy Fourier-transform mass spectrometry (HILIC-ESI-FTMS) or to linear ion trap multiple stage mass spectrometry (HILIC-ESI-MSn , with n = 2 and 3) with electrospray ionization was developed to unveil one of those artefacts. Specifically, the artificial generation of methyl esters of phosphatidic acids (MPA), catalysed by endogenous phospholipase D (PLD) during lipid extraction from five oleaginous microgreen crops (chia, soy, flax, sunflower and rapeseed), was studied. Phosphatidylcholines (PC) and phosphatidylglycerols (PG) were found to be the most relevant precursors of MPA among glycerophospholipids (GPLs), being involved in a transphosphatidylation process catalysed by PLD and having methanol as a coreactant. The combination of MS2 and MS3 measurements enabled the unambiguous recognition of MPA from their fragmentation pathways, leading to distinguish them from isobaric PA including a further CH2 group on their side chains. PLD was also found to catalyse the hydrolysis of PC and PG to phosphatidic acids (PAs). The described transformations were confirmed by the remarkable decrease of MPA abundance observed when isopropanol, known to inhibit PLD, was tentatively adopted instead of water during the homogenization of microgreens. The unequivocal identification of MPA might be exploited to assess if GPL alterations are actually triggered by endogenous PLD during lipid extractions from specific vegetal tissues.

7.
Antioxidants (Basel) ; 10(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925644

ABSTRACT

One of the challenges for agriculture in the coming years will be producing more food avoiding reducing the nutritional values of fruits and vegetables, sources of nutraceutical compounds. It has been demonstrated that light-emitting diodes (LEDs) used as a supplementary light (SL) technology improve tomato yield in Mediterranean greenhouses, but few data have been reported about SL effects on fruit physio-chemical parameters. In this study, three tomato hybrid (F1) cultivars were grown for year-round production in a commercial semi-closed glasshouse in Southern Italy: red cherry type ("Sorentyno"), red plum type ("Solarino"), and yellow plum type ("Maggino"). From 120 to 243 days after transplant (DAT), Red/White/Blue LEDs were used as SL. The fruits harvested 180 DAT were analyzed and those obtained under LEDs had 3% more dry weight, 15% more total soluble solids, and 16% higher titratable acidity than fruits grown only under natural light. Generally, the antioxidant activity and the mineral profile of the fruits were not negatively influenced by SL. Lycopene content was unchanged and vitamin C content of "Sorentyno" even increased by 15% under LEDs. Overall, LEDs used as SL technology could be one of the tools used by agriculture in Mediterranean basin to produce more food maintaining high quality production.

8.
J Am Soc Mass Spectrom ; 32(4): 1008-1019, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33705659

ABSTRACT

In the past decade, hydrophilic interaction liquid chromatography (HILIC) has emerged as an efficient alternative to reversed-phase chromatography (RPC) for the analysis of phospholipid (PL) mixtures based on mass spectrometric detection. Since the separation of PL by HILIC is chiefly based on their headgroup, the mass spectrum of each class can be obtained by spectral averaging under the corresponding HILIC band. Using experimental m/z values resulting from high mass resolution/accuracy instruments, the sum compositions of PL in a specific class can be thus inferred but partial overlapping may occur between signals related to the M + 0 isotopologue of one species and the M + 2/M + 4 isotopologues of species having one/two more C═C bonds in their chemical structures. Here, an automated workflow, named LIPIC (lipid isotopic pattern interference correction), is proposed to account for such interferences. Starting from the experimentally verified assumption that peaks in isotope patterns are Gaussian, LIPIC predicts, as a function of m/z ratio, signal intensities due to M + 2 and M + 4 isotopologues of species with one or two more C = C bonds than the target one and calculates the corrected intensity for the M + 0 isotopologue of the latter. Thanks to an iterative procedure, the suggested algorithm compensates also for slight shifts occurring between experimental and theoretical m/z ratios related to isotopologue peaks. Examples of applications to simulated and experimental mass spectra of two PL classes, i.e., phosphatidylcholines (PC) and cardiolipins (CL), emphasize the increased extent of correction at the increase of molecular masses of involved species.

9.
Foods ; 9(9)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887492

ABSTRACT

Microgreens have immense potential for improving dietary patterns, but little information is available regarding their overall nutritional value. We evaluated the nutritional traits of three hydroponically grown Brassica microgreens by using a Nutrient Quality Score. Micro cauliflower, micro broccoli and micro broccoli raab were grown using nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Protein, dietary fiber, ß-carotene, α-tocopherol and mineral elements (Ca, K, Mg, Fe, Zn, Cu, Mn, and Na) were analyzed. We developed the Nutrient Quality Score (NQS 11.1) on the basis of 11 desirable nutrients and 1 nutrient (sodium) to be limited. All Brassica microgreens are an excellent source of Vitamins A and E (more than 20% of the daily reference value-DRV), as well as a good source of calcium and manganese (10-19% of the DRV). Micro cauliflower showed a NQS 11.1 at 47% higher than micro broccoli raab and micro broccoli. Using NH4:NO3 25:75 molar ratio, the average score was 27% higher than other molar ratios. In all cases, the microgreens in the present study showed a higher NQS 11.1 than their mature counterpart (on the basis of data from the United States Department of Agriculture), highlighting that the score of micro cauliflower was about six-fold higher than mature cauliflower. In conclusion, the NQS 11.1 was useful for assessing the overall nutritional quality of the three Brassica microgreens, instead of simply quantifying nutrient content, in order to compare a single nutrient among different genotypes. Furthermore, the results highlight that the micro broccoli raab, micro broccoli and micro cauliflower in this study can be considered nutrient-rich vegetables that are able to improve dietary patterns more effectively than their mature counterparts.

10.
Front Plant Sci ; 11: 604, 2020.
Article in English | MEDLINE | ID: mdl-32477393

ABSTRACT

Rocket cultivation is increasing to supply the expanding ready-to-eat market because of its unique taste, but crops are often over fertilized to avoid nitrogen deficiencies. This leads to nitrate accumulation in leaves, and the products of their degradation (nitrites and nitrosamines) have been related to several health problems. Nitrate concentrations in rocket and other leafy vegetables are subject to limits by the EU legislation, yet rocket holds a great nutritional value. Degradation products of glucosinolates (isothiocyanates) have been consistently linked with benefits to human health. We investigated the influence of nitrogen application (1 and 8 mM), species [Eruca sativa (L.) Cav. and Diplotaxis tenuifolia (L.) DC.] and light spectrum (full spectrum, red, blue and red + blue) on the nitrate concentration, nitrate reductase activity and glucosinolate content of rocket grown in a soil-less system. Red light decreased the nitrate concentration with respect to the blue spectrum (4,270 vs. 7,100 mg⋅kg-1 of fresh weight, respectively), but such reduction was influenced by the species and the nitrogen level (significantly higher in D. tenuifolia and with the higher concentration of N). The nitrate reductase activity increased under red light in D. tenuifolia, with the lower N concentration. Rocket is known to contain several health-promoting compounds mainly antioxidants and glucosinolates, as secondary metabolites that act as part of plant defense mechanisms. The total content of glucosinolates was mainly affected by the species (D. tenuifolia showed the highest concentrations). Our results will help growers to tailor light spectra with the aim of reducing nitrate concentration and to remain within EU legislative limits, without any detrimental influence on other qualitative parameters in rocket.

11.
Foods ; 9(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466141

ABSTRACT

Microgreens are gaining more and more interest, but little information is available on the effects of the chemical composition of the nutrient solution on the microgreen yield. In this study, three Brassica genotypes (B. oleracea var. italica, B. oleracea var. botrytis, and Brassica rapa L. subsp. sylvestris L. Janch. var. esculenta Hort) were fertigated with three modified strength Hoagland nutrient solutions (1/2, 1/4, and 1/8 strength) or with three modified half-strength Hoagland nutrient solutions with three different NH4:NO3 molar ratios (5:95, 15:85, and 25:75). Microgreen yields and content of inorganic ions, dietary fiber, proteins, α-tocopherol, and ß-carotene were evaluated. Micro cauliflower showed the highest yield, as well as a higher content of mineral elements and α-tocopherol (10.4 mg 100 g-1 fresh weight (FW)) than other genotypes. The use of nutrient solution at half strength gave both a high yield (0.23 g cm-2) and a desirable seedling height. By changing the NH4:NO3 molar ratio in the nutrient solution, no differences were found on yield and growing parameters, although the highest ß-carotene content (6.3 mg 100 g-1 FW) was found by using a NH4:NO3 molar ratio of 25:75. The lowest nitrate content (on average 6.8 g 100 g-1 dry weight) was found in micro broccoli and micro broccoli raab by using a nutrient solution with NH4:NO3 molar ratios of 25:75 and 5:95, respectively. Micro cauliflower fertigated with a NH4:NO3 molar ratio of 25:75 showed the highest dry matter (9.8 g 100 g-1 FW) and protein content (4.2 g 100 g-1 FW).

12.
Plants (Basel) ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370038

ABSTRACT

Barattiere, belonging to the Cucumis melo L. species, is a local variety of Puglia (Southern Italy), which is consumed as a vegetable at the immature stage, like cucumber. In this study, three Barattiere populations ('Monopoli', 'Carovigno' and 'Fasano') were evaluated for the main quality traits. All genotypes showed a very light green-yellow colour of flesh, without any difference regarding chlorophyll and carotenoid contents. Carovigno's Barattiere showed the highest values of dry weight (6.8 g 100 g-1 fresh weight - FW), sugars (45 g kg-1 FW), and sweetness index (7.3), while Monopoli's Barattiere showed the lowest total phenols content (21 mg kg-1 FW). Fasano's Barattiere showed the highest content of Zn and Cu (2.3 and 0.3 mg kg-1 FW, respectively), while 'Monopoli' showed the highest Ba content (0.3 mg kg-1 FW) and the lowest Mg content (94 mg kg-1 FW). No differences between populations were found concerning the content of Ca, K, Na, B, Mn, and Fe. In conclusion, the quality profile of Barattiere makes this local genotype interesting for its traits, and also suggests its consumption by people with specific dietary requirements.

13.
Foods ; 9(4)2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32276423

ABSTRACT

Microgreens are gaining increasing interest as a potential functional food due to their relevant contents of micronutrients and bioactive compounds, including carotenoids. Nevertheless, the analysis of carotenoids is inherently difficult, due to their thermal and chemical susceptibility, as well as to their varying polarity. From this point of view, extraction is the most critical step, compared to chromatographic separation and detection. Thus, the reliability of data on carotenoids should be guaranteed by a constant focus on analytical issues, with appropriate adaptations to each sample matrix. In this research, a specific extraction procedure for the analysis of carotenoids in microgreens was developed. Solvent composition, extraction time, solvent/sample ratio, and repeated extractions were evaluated. The obtained protocol showed recovery of 97.2%, limits of quantitation of 5.2 µg·g-1 for lutein and 15.9 µg·g-1 for ß-carotene, as well as intra-day mean repeatability of 5.7% and inter-day mean repeatability of 4.7%.

14.
Foods ; 9(2)2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32045980

ABSTRACT

Faba bean hulls are a by-product, generated from the processing of beans and usually disposed of as waste, utilized in some recipes of Italian traditional cuisine. In this research, a quality evaluation of faba hulls in six genotypes (four local varieties-'Cegliese', 'Iambola', 'San Francesco' and 'FV5'-and two commercial ones-'Aguadulce supersimonia' and 'Extra-early purple') of faba bean (Vicia faba L. var. major Harz) for fresh consumption grown with two plant densities (4.16 and 2.08 plants m-2) was carried out. For all the measured parameters, the statistical analysis reveals that the interaction between plant density and genotype was not significant. On the other hand, independently of the genotype, the higher the plant's density the higher was the pods' yield per unit area, while the average percentage of hulls was of 75% with little differences between genotypes. All genotypes showed a low content of vicine (12.4 mg 100 g-1 FW), a well know favism-inducing factor, and a very high phenols content (between 443 and 646 mg 100 g-1 FW) and levo-dihydroxy phenylalanine (L-dopa-on average 170 mg 100 g-1 FW), used for the treatment of patients affected by Parkinson's disease. In conclusion, this study highlights the good potential of faba hulls as unconventional vegetable, suggesting its use as a new functional food in the daily diet and also for patients with Parkinson's disease.

15.
Plants (Basel) ; 9(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024137

ABSTRACT

Living mulch gives many benefits to agro-ecosystems such as erosion control, nitrogen fixation and nutrient recycling, increasing of organic matter, weed and pest control, and increasing of soil organism. The experiment, carried out in Puglia, Southern Italy on transplanted broccoli raab (cv. Grossa fasanese), evaluated four soil management systems (SMSs): Trifolium subterraneum and T. repens used as living mulch, undisturbed weedy, and conventional tillage. For each SMS, four rates of nitrogen and phosphorous (NP0, NP1, NP2, and NP3) were supplied, using an organic fertilizer. The following data were collected: weed infestation, leaf chlorophyll in the plants (as SPAD units), weight, diameter, and colour of the inflorescences, anion and Mg, Fe, Na, K, Ca content. Fertilization showed prominent effects on most of parameters evaluated. The Sufficient Index of broccoli raab plants was higher in fertilized plots. With the increasing of fertilization rates, weight of primary inflorescences and the marketable yield linearly increased, confirming the great influence of nitrogen fertilization on the yield of Brassicaceae vegetables and highlighting the importance of combining living mulch and fertilization. By increasing fertilization rates, some elements, such as Mg and Fe, increased, whereas a decrease of Na, K, and Ca was observed. The nitrate content in the inflorescences was different only between the fertilized and unfertilized plots, although it was very low. In NP2 and NP3 a greener colour was found. Living mulch did not clearly affect quality and yield of broccoli raab but was effective in weed control. Results show the positive effects of living mulch and organic fertilization in the sustainable production of broccoli raab.

16.
Plants (Basel) ; 8(8)2019 Aug 08.
Article in English | MEDLINE | ID: mdl-31398799

ABSTRACT

Puglia (Southern Italy), particularly rich in tomato agro-biodiversity, can be considered a typical region of the semi-arid Mediterranean environments. In this study, three local varieties of tomato (Manduria, Giallo di Crispiano and Regina) were characterized by using morphological descriptors according to international standards. Chemical (isoprenoids, ascorbic acid, total phenols, sugars and mineral content) and agronomic assessment were carried out to highlight the specific traits of these local varieties well adapted to a semi-arid environment. Data of morphological traits according to the "International Union for the Protection of New Varieties of Plants" (UPOV) guideline evidenced a clear distinctness among all three landraces, especially as regards fruits. Results also highlighted that a great part of variation in chemical traits was almost exclusively due to genotypes, while in a few cases observed differences resulted from the interaction between genotype and harvest time. The results of the present study may represent the first step toward the recognition of "conservation variety" status for Regina, Giallo di Crispiano and Manduria tomato landraces. At the same time, both quality traits and agronomic performance of these tomato genotypes suggest the possibility of their cultivation in other semi-arid environments also considering their quality traits, in view of a sustainable production.

17.
Nutrients ; 11(2)2019 Feb 21.
Article in English | MEDLINE | ID: mdl-30795581

ABSTRACT

The use of iodine-biofortified vegetables may be a health alternative instead of iodine-biofortified salt for preventing iodine (I) deficiency and related human disorders. In this study, four Brassica genotypes (broccoli raab, curly kale, mizuna, red mustard) were hydroponically grown with three I-IO3- rates (0, 0.75 and 1.5 mg/L) to produce iodine-biofortified vegetables. Crop performances and quality traits were analyzed; iodine content was measured on raw, boiled, and steamed vegetables. The highest I rate generally increased I content in all Brassica genotypes, without plants toxicity effects in terms of reduced growth or morphological symptoms. After 21 day-iodine biofortification, the highest I content (49.5 µg/100 g Fresh Weight (FW)) was reached in broccoli raab shoots, while after 43 day-iodine biofortification, genotype differences were flattened and the highest I content (66 µg/100 g FW, on average) was obtained using 1.5 mg I-IO3/L. Nitrate content (ranging from 1800 to 4575 mg/kg FW) was generally higher with 0.75 mg I-IO3/L, although it depended on genotypes. Generally, boiling reduced iodine content, while steaming increased or left it unchanged, depending on genotypes. Applying low levels of I proved to be suitable, since it could contribute to the partial intake of the recommended dose of 150 µg/day: A serving size of 100 g may supply on average 24% of the recommended dose. Cooking method should be chosen in order to preserve and/or enhance the final I amount.


Subject(s)
Biofortification/methods , Brassica/metabolism , Food, Fortified , Genotype , Iodates/metabolism , Iodine/metabolism , Potassium Compounds/metabolism , Vegetables/chemistry , Brassica/genetics , Cooking , Deficiency Diseases/prevention & control , Diet , Energy Intake , Humans , Hydroponics , Iodine/administration & dosage , Iodine/deficiency , Nitrates/metabolism , Plant Shoots/metabolism , Species Specificity
18.
Food Funct ; 9(11): 5629-5640, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30298894

ABSTRACT

Besides the variety of colours and flavours, microgreens show interesting nutritional properties, mainly regarding their contents of mineral nutrients and bioactive compounds. To date, the literature has prevalently focused on the individual nutritional features of microgreens usually belonging to Brassicaceae. The present study reports an articulated nutritional profile of six genotypes of microgreens, belonging to three species and two families: chicory (Cichorium intybus L., Puglia's local variety 'Molfetta', CM, and cultivar 'Italico a costa rossa', CR) and lettuce (Lactuca sativa L. Group crispa, cultivar 'Bionda da taglio', LB, and 'Trocadero', LT), from Asteraceae; and broccoli (Brassica oleracea L. Group italica Plenk, Puglia's local variety 'Mugnuli', BM, and cultivar 'Natalino', BN) from Brassicaceae. All the microgreens, except LB, can be considered good sources of Ca, whilst LT and CM also showed considerable amounts of K. As regards bioactive compounds, Brassica microgreens were the richest in phenolic antioxidants. The microgreens also presented higher amounts of α-tocopherol and carotenoids compared to mature vegetables. In particular, broccoli microgreens and LB showed the highest amounts of vitamin E, while Asteraceae microgreens presented the highest levels of carotenoids. Due to their delicate tissues, fresh cut microgreens showed a shelf life not exceeding ten days at 5 °C. The results obtained highlight the possibility to exploit genetic biodiversity in order to obtain tailored microgreens with the desired nutritional profiles, with particular regard to mineral nutrients and bioactive compounds. Appropriate pre- and post-harvest strategies should be developed, so as to allow microgreens to retain as long as possible their nutritional value.


Subject(s)
Brassica/chemistry , Food Storage , Lactuca/chemistry , Nutritive Value , Vegetables/chemistry , Antioxidants/analysis , Carotenoids/analysis , Micronutrients/analysis , Phenols/analysis
19.
Nutrients ; 10(6)2018 May 26.
Article in English | MEDLINE | ID: mdl-29861444

ABSTRACT

Chronic kidney disease represents a global problem together with other so-called 'lifestyle-related diseases'. Unlike the healthy population, for the patients with impaired kidney function, it is of course prudent to recommend a restriction of high-potassium foods. Thus, it is suggested to limit the consumption of vegetables, because they generally contain high concentrations of potassium. At the same time, a lower consumption of vegetables reduces the intake of healthy compounds such as vitamins, fibers, and antioxidants, which also reduces the vegetables' potential benefit in chronic kidney disease patients. Microgreens are an emerging class of specialty crop that represent a nutritious and refined food. In this study, for the first time, some chicory (local variety 'Molfetta' and cultivar 'Italico a costa rossa') and lettuce (cultivar 'Bionda da taglio') genotypes were grown using a hydroponic system with different potassium (K) levels (0, 29.1, 58.4, and 117 mg L-1) in order to produce microgreens with a low potassium content. The crop performances, cations content, proximate composition, and antioxidant activity were analyzed. Independent of the genotype, the K content in the microgreens was successfully reduced using a nutrient solution (NS), without K or with 29.1 mg K L-1, which supplied between 103 and 129 mg of K 100 g-1 FW (about 7.7⁻8.6% of the K daily intake that was recommended for the patients that were affected by chronic kidney disease). Whereas, 100 g of microgreens that were grown by using an NS with 58.4 or 117 mg K L-1 supply between 225 and 250 mg of K (about 15.8⁻16.5% of the K daily intake recommended for patients affected by chronic kidney disease). No differences were observed in terms of the shoot height, dry matter, proximate composition, and visual quality. A slightly lower yield was observed using an NS with a K concentration.


Subject(s)
Cichorium intybus/growth & development , Hydroponics , Lactuca/growth & development , Plant Leaves/growth & development , Potassium, Dietary/adverse effects , Renal Insufficiency, Chronic/diet therapy , Vegetables/growth & development , Antioxidants/analysis , Antioxidants/metabolism , Cichorium intybus/chemistry , Cichorium intybus/metabolism , Diet, Healthy , Food Quality , Humans , Italy , Lactuca/chemistry , Lactuca/metabolism , Nutritive Value , Osmolar Concentration , Plant Leaves/chemistry , Plant Leaves/metabolism , Plant Shoots/chemistry , Plant Shoots/growth & development , Plant Shoots/metabolism , Potassium/analysis , Potassium/metabolism , Potassium, Dietary/analysis , Seedlings/chemistry , Seedlings/growth & development , Seedlings/metabolism , Species Specificity , Vegetables/chemistry , Vegetables/metabolism
20.
Front Plant Sci ; 9: 378, 2018.
Article in English | MEDLINE | ID: mdl-29636760

ABSTRACT

Globe artichoke (Cynara cardunculus L. subsp. [L.] scolymus Hayek), summer squash (Cucurbita pepo L.) and faba bean (Vicia faba L.) are widely cultivated for their immature inflorescences, fruits and seeds, respectively. Nevertheless, in some areas of Puglia (Southern Italy), other organs of these species are traditionally used as vegetables, instead of being considered as by-products. Offshoots (so-called cardoni or carducci) of globe artichoke, produced during the vegetative growing cycle and removed by common cultural procedures, are used like to the cultivated cardoons (C. cardunculus L. var. altilis DC). The stems, petioles, flowers and smaller leaves of summer squash are used as greens (so-called cime di zucchini), like other leafy vegetables such as chicory (Cichorium intybus L.) and Swiss chard (Beta vulgaris L.). Also the plant apex of faba bean, about 5-10 cm long, obtained from the green pruning, are used as greens (so-called cime di fava) like spinach leaves. Moreover, crenate broomrape (Orobanche crenata Forssk.), a root parasite plant that produces devastating effects on many crops (mostly legumes), is used like asparagus (Asparagus officinalis L.) to prepare several traditional dishes. In this study ethnobotanical surveys and quality assessment of these unconventional vegetables were performed. For their content of fiber, offshoots of globe artichokes can be considered a useful food to bowel. Summer squash greens could be recommended as a vegetable to use especially in the case of hypoglycemic diets considering both content and composition of their carbohydrates. For their low content of nitrate, faba greens could be recommended as a substitute of nitrate-rich leafy vegetables. Crenate broomrape shows a high antioxidant activity and may be considered as a very nutritious agri-food product. Overall, the results of the present study indicate that offshoots of globe artichoke, summer squash greens, faba greens and crenate broomrape have good potential as novel foods, being nutritious and refined products. Their exploitation aiming to the obtainment of labeled and/or new potential ready-to-eat retail products could satisfy the demand for local functional foods.

SELECTION OF CITATIONS
SEARCH DETAIL
...