Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Food Chem ; 343: 128419, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33268170

ABSTRACT

A modified electrode was developed with Co-Ag bimetallic nanoparticles stabilized in poly(vinylpyrrolidone) for butralin monitoring. This is the first non-mercury electrode proposed for the quantification of butralin. The bimetallic nanoparticles were characterized by spectroscopic and microscopic techniques, which showed that they are composed of a cobalt core partially covered with silver. The modified electrode was characterized by field emission gun scanning electron microscopy, energy dispersive X-ray spectroscopy and electrochemical impedance spectroscopy. The experimental parameters (pH, supporting electrolyte, accumulation step, pulse technique) were optimized. The calibration plot for butralin obtained by square wave voltammetry was linear in the range of 0.1-1.0 µmol L-1 with limits of detection and quantification of 32 and 106 nmol L-1, respectively. Lastly, the modified electrode was effectively implemented in the quantification of butralin in honey and apple jam samples. The results were in agreement with those furnished by UV-vis spectrometry and endorsed by statistical tests.


Subject(s)
Aniline Compounds/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrodes , Food Analysis/methods , Food Contamination/analysis , Calibration , Cobalt , Dielectric Spectroscopy , Food Analysis/instrumentation , Honey/analysis , Hydrogen-Ion Concentration , Limit of Detection , Malus , Mercury , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning , Silver/chemistry , Spectrometry, X-Ray Emission
2.
Food Chem ; 326: 127055, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32438225

ABSTRACT

Tannic acid is often used as additive in beers and is an important parameter to be evaluated in quality control of beverages. Thus, this paper describes the improvement of a carbon paste electrode through its modification with poly(ethylene glycol) for determination of tannic acid in beers. Microscopic and electrochemical techniques were used to characterize the modified surface. The electrochemical behavior of tannic acid and the optimization of experimental parameters (pH, supporting electrolyte and accumulation step) on the modified surface were performed by cyclic voltammetry. The calibration plot for tannic acid by differential pulse voltammetry was linear in the range of 0.08-2.10 µmol L-1 with limits of detection and quantification of 72.6 and 220 nmol L-1, respectively. Lastly, the carbon paste electrode improved with poly(ethylene glycol) was effectively implemented in the quantification of tannic acid in beer samples. The results were similar to those furnished by the Folin-Ciocalteu method.


Subject(s)
Beer/analysis , Carbon/chemistry , Polyethylene Glycols/chemistry , Tannins/analysis , Electrochemical Techniques , Electrodes
3.
An Acad Bras Cienc ; 88(3 Suppl): 1993-2004, 2016.
Article in English | MEDLINE | ID: mdl-27737339

ABSTRACT

Spondias tuberosa Arruda, popularly named as umbu, is native from savanna-like vegetation and widely used for medicinal purposes, however, the toxicological profile is not available yet. This study evaluated the phytochemical profile and acute toxicity and citoxicity of Ethanolic Extract of Spondias tuberosa Arruda Bark (EEStb) in hematological, biochemical and histopathological parameters. Female Wistar rats were divided into: control (C) and animal treated single doses of 300mg/Kg (EEStb300) or 2.000mg/kg body weight (ESStb2.000) of the EEStb. After 24 hours and 14 days from gavage, the behavior, hematological, biochemical and histopathological parameters were assayed. Cytotoxicity effect was evaluated on HEp-2 cell lines. Neither EEStb300 nor EEStb2.000 produced mortality nor changes in body weight during the 14-days of observation, but EEStb2.000 reduced quietly the food and water intake as well as locomotor activity at first day. There were no changes in macroscopic, histopathological, biochemical and hematological parameters. EEStb in concentrations of 6.25- 50µg ml-1 on HEp-2 cell did not produce cytotoxic effect. These results suggest that EEStb did not cause acute toxicity and cytotoxic, suggesting a good safety rate for Spondias tuberosa Arruda.


Subject(s)
Anacardiaceae/chemistry , Plant Extracts/toxicity , Plants, Medicinal/toxicity , Animals , Ethanol , Female , Plants, Medicinal/chemistry , Rats , Rats, Wistar , Time Factors , Toxicity Tests, Acute
4.
Molecules ; 20(5): 8595-604, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25985360

ABSTRACT

Capraria biflora L. is a shrub from the Scrophulariaceae family which produces in its roots a compound named biflorin, an o-naphthoquinone that shows activity against Gram-positive bacteria and fungi and also presents antitumor and antimetastatic activities. However, biflorin is hydrophobic and photosensitive. These properties make its application difficult. In this work we prepared biflorin micellar nanostructures looking for a more effective vehiculation and better preservation of the biological activity. Biflorin was obtained, purified and characterized by UV-Vis, infrared (IR) and 1H- and 13C-NMR. Micellar nanostructures of biflorin were then assembled with Tween 80®, Tween 20® and saline (0.9%) and characterized by UV-Vis spectroscopy and dynamic light scattering (DLS). The results showed that the micellar nanostructures were stable and presented an average size of 8.3 nm. Biflorin micellar nanostructures' photodegradation was evaluated in comparison with biflorin in ethanol. Results showed that the biflorin in micellar nanostructures was better protected from light than biflorin dissolved in ethanol, and also indicated that biflorin in micelles were efficient against Gram-positive bacteria and yeast species. In conclusion, the results showed that the micellar nanostructures could ensure the maintenance of the biological activity of biflorin, conferring photoprotection. Moreover, biflorin vehiculation in aqueous media was improved, favoring its applicability in biological systems.


Subject(s)
Anti-Infective Agents/pharmacology , Candida/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Naphthoquinones/pharmacology , Anti-Infective Agents/chemistry , Micelles , Microbial Sensitivity Tests , Nanostructures/chemistry , Naphthoquinones/chemistry , Plant Roots/chemistry , Scrophulariaceae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...