Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 103(7): 6087-6099, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32389470

ABSTRACT

Our objective was to determine the effects of replacing alfalfa silage (AS) neutral detergent fiber (NDF) with corn silage (CS) NDF at 2 levels of forage NDF (FNDF) on enteric methane (CH4), lactation performance, ruminal fluid characteristics, digestibility, and metabolism of N and energy in Holstein and Jersey cows. Twelve Holstein and 12 Jersey cows (all primiparous and mid-lactation) were used in a triplicated split-plot 4 × 4 Latin square experiment, where breed and diet formed the main and subplots, respectively. The 4 iso-nitrogenous and iso-starch dietary treatments were arranged as a 2 × 2 factorial with 2 levels of FNDF [19 (low FNDF, LF) and 24% (high FNDF, HF) of dry matter] and 2 sources of FNDF (70:30 and 30:70 ratio of AS NDF to CS NDF). Soyhull (non-forage NDF) and corn grain were respectively used to keep dietary NDF and starch content similar across diets. Total collection of feces and urine over 3 d was performed on 8 cows (1 Latin square from each breed). The difference in dry matter intake (DMI) between Holsteins and Jerseys was greater when fed AS than CS. Compared with Jerseys, Holstein cows had greater body weight (48%), DMI (34%), fat- and protein-corrected milk (FPCM; 31%) and CH4 production (22%; 471 vs. 385 g/d). However, breed did not affect CH4 intensity (g/kg of FPCM) or yield (g/kg of DMI), nutrient digestibility, and N partitioning. Compared with HF, LF-fed cows had greater DMI (10%), N intake (8%), and FPCM (5%), but they were 5% less efficient (both FPCM/DMI and milk N/intake N). Compared with HF, LF-fed cows excreted 11 and 17% less urinary N (g/d and % of N intake, respectively). In spite of lower (2.5%) acetate and higher (10%) propionate (mol/100 mol ruminal volatile fatty acids) LF-fed cows had greater (6%) CH4 production (g/d) than did HF-fed cows, most likely due to increased DMI, as affected mainly by the soyhulls. Compared with AS, CS-fed cows had greater DMI (7%) and FPCM (4%), but they were less efficient (5%), and CH4 yield (g/kg of DMI) was reduced by 8%. In addition, per unit of gross energy intake, CS-fed cows lost less urinary energy (15%) and CH energy (11%) than did AS-fed cows. We concluded that, in contrast to level and source of FNDF, breed did not affect digestive and metabolic efficiencies, and, furthermore, neither breed nor dietary treatments affected CH4 intensity. The tradeoff between CH4 and N losses may have implications in future studies assessing the environmental effects of milk production when approached from a whole-farm perspective.


Subject(s)
Dietary Fiber/administration & dosage , Digestion/drug effects , Lactation/drug effects , Methane/biosynthesis , Nitrogen/metabolism , Silage/analysis , Animals , Cattle , Cross-Over Studies , Diet/veterinary , Dietary Fiber/metabolism , Energy Metabolism , Fatty Acids, Volatile/metabolism , Feces/chemistry , Female , Medicago sativa/metabolism , Milk/chemistry , Milk Proteins/analysis , Rumen/metabolism , Starch/metabolism , Zea mays/metabolism
2.
J Dairy Sci ; 102(9): 8546-8558, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301834

ABSTRACT

In the semi-arid highlands of central Mexico, triticale (× Triticosecale L.) is emerging as an alternative, less water-demanding forage crop than alfalfa for dairy cattle. Studies reported here were aimed at evaluating triticale hay (TH) relative to alfalfa hay (AH) for lactating cow performance, apparent digestibility, N partition, and ruminal degradation kinetics of dry matter (DM), crude protein (CP), and neutral detergent fiber (NDF). Study 1 was conducted on a privately owned farm. Four barns were used to conduct 4 replicated 3 × 3 Latin squares (1 barn = 1 square), where each barn included 3 pens (experimental units) receiving 1 of 3 dietary treatments. Each pen had 62 Holstein dairy cows. All diets included a forage-to-concentrate ratio of 42:58 (DM basis), which is typical for intensive dairy farms of the region. Dietary treatments were formulated to replace AH with TH on a CP basis, and included (DM basis) 15.1% AH and 0% TH, 9.0% AH and 7.4% TH, and 0% AH and 16.4% TH. Diets were iso-energetic (1.64 Mcal of net energy for lactation/kg of DM) and iso-nitrogenous (17.9% CP). Pen-level DM intake and milk production were from all cows in the pen, but pen-level milk composition, apparent digestibility, and N partitioning were from 8 cows (observational units) randomly selected in each pen. Orthogonal contrasts were used to determine linear and quadratic effects of increasing TH from 0 to 7.4, and 16.4% of dietary DM. Although DM intake was not affected, there was a tendency for CP intake to decline linearly and for NDF intake to increased linearly as TH replaced AH in the diet. Milk production declined linearly by 0.077 kg/d for each additional percentage unit of TH in the diet, which amounted to a 3.5% decline when TH replaced AH entirely. However, no effect was observed on energy-corrected milk production because of a compensatory linear effect of increasing milk fat concentration with the incorporation of TH in the diet. Total-tract NDF digestibility tended to increase linearly by 18.5%, but no differences were detected for urinary urea-N excretion and for N utilization estimated as milk N/(fecal N + urinary N + milk N). Study 2 was an in situ trial conducted to determine the degradation kinetics of AH and TH used in study 1. In spite of differences in degradation kinetics parameters for DM, CP, and NDF, only NDF effective ruminal degradation tended to be greater for TH than AH. Replacing AH with TH at the level typically found in intensive dairy farms of the semi-arid regions of Mexico had minimal effects on milk production and N utilization.


Subject(s)
Cattle/physiology , Lactation/physiology , Medicago sativa , Nitrogen/metabolism , Triticale , Animal Feed , Animals , Climate , Dairying/methods , Diet/veterinary , Dietary Fiber/administration & dosage , Digestion , Female , Medicago sativa/metabolism , Mexico , Milk/chemistry , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...