Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(8): e71322, 2013.
Article in English | MEDLINE | ID: mdl-23951135

ABSTRACT

Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8⁺ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8⁺ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.


Subject(s)
Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/immunology , HIV Infections/prevention & control , Herpes Simplex/prevention & control , Papillomavirus Infections/prevention & control , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use , AIDS Vaccines/immunology , AIDS Vaccines/therapeutic use , Alphapapillomavirus/genetics , Alphapapillomavirus/immunology , Animals , Antigens, Viral/genetics , Female , HIV/genetics , HIV/immunology , HIV Infections/immunology , Herpes Simplex/immunology , Herpes Simplex Virus Vaccines/immunology , Herpes Simplex Virus Vaccines/therapeutic use , Humans , Immunization , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Papillomavirus Infections/immunology , Papillomavirus Vaccines/immunology , Papillomavirus Vaccines/therapeutic use , Simplexvirus/genetics , Simplexvirus/immunology , Vaccines, DNA/genetics
2.
Mol Pharm ; 8(6): 2320-30, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-21985578

ABSTRACT

Type 1 herpes virus (HSV-1) glycoprotein D (gD) enhances antigen-specific immune responses, particularly CD8(+) T cell responses, in mice immunized with DNA vaccines encoding hybrid proteins genetically fused with the target antigen at a site near the C-terminal end. These effects are attributed to the interaction of gD with the herpes virus entry mediator (HVEM) and the concomitant blockade of a coinhibitory mechanism mediated by the B- and T-lymphocyte attenuator (BTLA). However, questions concerning the requirement for endogenous synthesis of the antigen or the adjuvant/antigen fusion itself have not been addressed so far. In the present study, we investigated these points using purified recombinant gDs, genetically fused or not with type 16 papilloma virus (HPV-16) E7 oncoprotein. Soluble recombinant gDs, but not denatured forms, retained the ability to bind surface-exposed cellular receptors of HVEM-expressing U937 cells. In addition, in vivo administration of the recombinant proteins, particularly gD genetically fused with E7 (gDE7), promoted the activation of dendritic cells (DC) and antigen-specific cytotoxic CD8(+) T cells. More relevantly, mice immunized with the gDE7 protein developed complete preventive and partial therapeutic antitumor protection, as measured in mice following the implantation of TC-1 cells expressing HPV-16 oncoproteins. Collectively, these results demonstrate that the T cell adjuvant effects of the HSV-1 gD protein did not require endogenous synthesis and could be demonstrated in mice immunized with purified recombinant proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Herpesvirus 1, Human , Human papillomavirus 16 , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/pharmacology , T-Lymphocytes/drug effects , Vaccines, DNA/immunology , Viral Envelope Proteins/genetics , Animals , CD8 Antigens/metabolism , Mice , Mice, Inbred C57BL , Papillomavirus E7 Proteins/immunology , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , T-Lymphocytes/immunology , Viral Envelope Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...