Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39005303

ABSTRACT

Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Multiple injury models have been developed to study this neurological disorder. One such model is the lateral fluid-percussion injury (LFPI) rodent model. The LFPI model can be generated with different surgical procedures that could affect the injury and be reflected in neurobehavioral dysfunction and acute EEG changes. A craniectomy was performed either with a trephine hand drill or with a trephine electric drill that was centered over the left hemisphere of adult, male Sprague Dawley rats. Sham craniectomy groups were assessed by hand-drilled (ShamHMRI) and electric-drilled (ShamEMRI) to evaluate by MRI. Then, TBI was induced in separate groups (TBIH) and (TBIE) using a fluid-percussion device. Sham-injured rats (ShamH/ShamE) underwent the same surgical procedures as the TBI rats. During the same surgery session, rats were implanted with screw and microwire electrodes positioned in the neocortex and hippocampus and the EEG activity was recorded 24 hours for the first 7 days after TBI for assessing the acute EEG seizure and Gamma Event Coupling (GEC). The electric drilling craniectomy induced greater tissue damage and sensorimotor deficits compared to the hand drill. Analysis of the EEG revealed acute seizures in at least one animal from each group after the procedure. Both TBI and Sham rats from the electric drill groups had a significant greater total number of seizures than the animals that were craniectomized manually (p<0.05). Similarly, EEG functional connectivity was lower in ShamE compared to ShamH rats. These results suggest that electrical versus hand drilling craniectomies produce cortical injury in addition to the LFPI which increases the likelihood for acute post-traumatic seizures. Differences in the surgical approach could be one reason for the variability in the injury that makes it difficult to replicate results between preclinical TBI studies.

2.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895342

ABSTRACT

Functional connectivity (FC) after TBI is affected by an altered excitatory-inhibitory balance due to neuronal dysfunction, and the mechanistic changes observed could be reflected differently by contrasting methods. Local gamma event coupling FC (GEC-FC) is believed to represent multiunit fluctuations due to inhibitory dysfunction, and we hypothesized that FC derived from widespread, broadband amplitude signal (BBA-FC) would be different, reflecting broader mechanisms of functional disconnection. We tested this during sleep and active periods defined by high delta and theta EEG activity, respectively, at 1,7 and 28d after rat fluid-percussion-injury (FPI) or sham injury (n=6/group) using 10 indwelling, bilateral cortical and hippocampal electrodes. We also measured seizure and high-frequency oscillatory activity (HFOs) as markers of electrophysiological burden. BBA-FC analysis showed early hyperconnectivity constrained to ipsilateral sensory-cortex-to-CA1-hippocampus that transformed to mainly ipsilateral FC deficits by 28d compared to shams. These changes were conserved over active epochs, except at 28d when there were no differences to shams. In comparison, GEC-FC analysis showed large regions of hyperconnectivity early after injury within similar ipsilateral and intrahemispheric networks. GEC-FC weakened with time, but hyperconnectivity persisted at 28d compared to sham. Edge- and global connectivity measures revealed injury-related differences across time in GEC-FC as compared to BBA-FC, demonstrating greater sensitivity to FC changes post-injury. There was no significant association between sleep fragmentation, HFOs, or seizures with FC changes. The within-animal, spatial-temporal differences in BBA-FC and GEC-FC after injury may represent different mechanisms driving FC changes as a result of primary disconnection and interneuron loss. Significance statement: The present study adds to the understanding of functional connectivity changes in preclinical models of traumatic brain injury. In previously reported literature, there is heterogeneity in the directionality of connectivity changes after injury, resulting from factors such as severity of injury, frequency band studied, and methodology used to calculate FC. This study aims to further clarify differential mechanisms that result in altered network topography after injury, by using Broadband Amplitude-Derived FC and Gamma Event Coupling-Derived FC in EEG. We found post-injury changes that differ in complexity and directionality between measures at and across timepoints. In conjunction with known results and future studies identifying different neural drivers underlying these changes, measures derived from this study could provide useful means from which to minimally-invasively study temporally-evolving pathology after TBI.

3.
J Neural Eng ; 21(3)2024 May 28.
Article in English | MEDLINE | ID: mdl-38722308

ABSTRACT

Objective. This study aims to develop and validate an end-to-end software platform, PyHFO, that streamlines the application of deep learning (DL) methodologies in detecting neurophysiological biomarkers for epileptogenic zones from EEG recordings.Approach. We introduced PyHFO, which enables time-efficient high-frequency oscillation (HFO) detection algorithms like short-term energy and Montreal Neurological Institute and Hospital detectors. It incorporates DL models for artifact and HFO with spike classification, designed to operate efficiently on standard computer hardware.Main results. The validation of PyHFO was conducted on three separate datasets: the first comprised solely of grid/strip electrodes, the second a combination of grid/strip and depth electrodes, and the third derived from rodent studies, which sampled the neocortex and hippocampus using depth electrodes. PyHFO demonstrated an ability to handle datasets efficiently, with optimization techniques enabling it to achieve speeds up to 50 times faster than traditional HFO detection applications. Users have the flexibility to employ our pre-trained DL model or use their EEG data for custom model training.Significance. PyHFO successfully bridges the computational challenge faced in applying DL techniques to EEG data analysis in epilepsy studies, presenting a feasible solution for both clinical and research settings. By offering a user-friendly and computationally efficient platform, PyHFO paves the way for broader adoption of advanced EEG data analysis tools in clinical practice and fosters potential for large-scale research collaborations.


Subject(s)
Deep Learning , Electroencephalography , Electroencephalography/methods , Electroencephalography/instrumentation , Animals , Rats , Algorithms , Epilepsy/physiopathology , Epilepsy/diagnosis , Software , Humans , Hippocampus/physiology
4.
Epilepsia ; 65(2): 511-526, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052475

ABSTRACT

OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Male , Rats , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/pathology , Percussion , Phenotype , Rats, Sprague-Dawley , Reproducibility of Results , Seizures
5.
Epilepsy Res ; 199: 107263, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056191

ABSTRACT

OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Rats , Biomarkers , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Disease Models, Animal , Epilepsy/etiology , Epilepsy/diagnosis , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/drug therapy , Seizures , Multicenter Studies as Topic
6.
Epilepsy Res ; 195: 107201, 2023 09.
Article in English | MEDLINE | ID: mdl-37562146

ABSTRACT

Preclinical MRI studies have been utilized for the discovery of biomarkers that predict post-traumatic epilepsy (PTE). However, these single site studies often lack statistical power due to limited and homogeneous datasets. Therefore, multisite studies, such as the Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx), are developed to create large, heterogeneous datasets that can lead to more statistically significant results. EpiBioS4Rx collects preclinical data internationally across sites, including the United States, Finland, and Australia. However, in doing so, there are robust normalization and harmonization processes that are required to obtain statistically significant and generalizable results. This work describes the tools and procedures used to harmonize multisite, multimodal preclinical imaging data acquired by EpiBioS4Rx. There were four main harmonization processes that were utilized, including file format harmonization, naming convention harmonization, image coordinate system harmonization, and diffusion tensor imaging (DTI) metrics harmonization. By using Python tools and bash scripts, the file formats, file names, and image coordinate systems are harmonized across all the sites. To harmonize DTI metrics, values are estimated for each voxel in an image to generate a histogram representing the whole image. Then, the Quantitative Imaging Toolkit (QIT) modules are utilized to scale the mode to a value of one and depict the subsequent harmonized histogram. The standardization of file formats, naming conventions, coordinate systems, and DTI metrics are qualitatively assessed. The histograms of the DTI metrics were generated for all the individual rodents per site. For inter-site analysis, an average of the individual scans was calculated to create a histogram that represents each site. In order to ensure the analysis can be run at the level of individual animals, the sham and TBI cohort were analyzed separately, which depicted the same harmonization factor. The results demonstrate that these processes qualitatively standardize the file formats, naming conventions, coordinate systems, and DTI metrics of the data. This assists in the ability to share data across the study, as well as disseminate tools that can help other researchers to strengthen the statistical power of their studies and analyze data more cohesively.


Subject(s)
Epilepsy, Post-Traumatic , Epilepsy , Animals , Epilepsy, Post-Traumatic/drug therapy , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Biomarkers , Brain/diagnostic imaging
7.
Epilepsia Open ; 8(2): 586-608, 2023 06.
Article in English | MEDLINE | ID: mdl-37026764

ABSTRACT

OBJECTIVE: We used the lateral fluid percussion injury (LFPI) model of moderate-to-severe traumatic brain injury (TBI) to identify early plasma biomarkers predicting injury, early post-traumatic seizures or neuromotor functional recovery (neuroscores), considering the effect of levetiracetam, which is commonly given after severe TBI. METHODS: Adult male Sprague-Dawley rats underwent left parietal LFPI, received levetiracetam (200 mg/kg bolus, 200 mg/kg/day subcutaneously for 7 days [7d]) or vehicle post-LFPI, and were continuously video-EEG recorded (n = 14/group). Sham (craniotomy only, n = 6), and naïve controls (n = 10) were also used. Neuroscores and plasma collection were done at 2d or 7d post-LFPI or equivalent timepoints in sham/naïve. Plasma protein biomarker levels were determined by reverse phase protein microarray and classified according to injury severity (LFPI vs. sham/control), levetiracetam treatment, early seizures, and 2d-to-7d neuroscore recovery, using machine learning. RESULTS: Low 2d plasma levels of Thr231 -phosphorylated tau protein (pTAU-Thr231 ) and S100B combined (ROC AUC = 0.7790) predicted prior craniotomy surgery (diagnostic biomarker). Levetiracetam-treated LFPI rats were differentiated from vehicle treated by the 2d-HMGB1, 2d-pTAU-Thr231 , and 2d-UCHL1 plasma levels combined (ROC AUC = 0.9394) (pharmacodynamic biomarker). Levetiracetam prevented the seizure effects on two biomarkers that predicted early seizures only among vehicle-treated LFPI rats: pTAU-Thr231 (ROC AUC = 1) and UCHL1 (ROC AUC = 0.8333) (prognostic biomarker of early seizures among vehicle-treated LFPI rats). Levetiracetam-resistant early seizures were predicted by high 2d-IFNγ plasma levels (ROC AUC = 0.8750) (response biomarker). 2d-to-7d neuroscore recovery was best predicted by higher 2d-S100B, lower 2d-HMGB1, and 2d-to-7d increase in HMGB1 or decrease in TNF (P < 0.05) (prognostic biomarkers). SIGNIFICANCE: Antiseizure medications and early seizures need to be considered in the interpretation of early post-traumatic biomarkers.


Subject(s)
Brain Injuries, Traumatic , HMGB1 Protein , Rats , Male , Animals , Levetiracetam/pharmacology , Rats, Sprague-Dawley , Brain Injuries, Traumatic/drug therapy , Seizures/drug therapy , Biomarkers , Blood Proteins
8.
Epilepsia ; 63(7): 1835-1848, 2022 07.
Article in English | MEDLINE | ID: mdl-35366338

ABSTRACT

OBJECTIVE: We examined whether posttraumatic epilepsy (PTE) is associated with measurable perturbations in gut microbiome. METHODS: Adult Sprague Dawley rats were subjected to lateral fluid percussion injury (LFPI). PTE was examined 7 months after LFPI, during 4-week continuous video-electroencephalographic monitoring. 16S ribosomal RNA gene sequencing was performed in fecal samples collected before LFPI/sham-LFPI and 1 week, 1 month, and 7 months thereafter. Longitudinal analyses of alpha diversity, beta diversity, and differential microbial abundance were performed. Short-chain fatty acids (SCFAs) were measured in fecal samples collected before LFPI by liquid chromatography with tandem mass spectrometry. RESULTS: Alpha diversity changed over time in both LFPI and sham-LFPI subjects; no association was observed between alpha diversity and LFPI, the severity of post-LFPI neuromotor impairments, and PTE. LFPI produced significant changes in beta diversity and selective changes in microbial abundances associated with the severity of neuromotor impairments. No association between LFPI-dependent microbial perturbations and PTE was detected. PTE was associated with beta diversity irrespective of timepoint vis-à-vis LFPI, including at baseline. Preexistent fecal microbial abundances of four amplicon sequence variants belonging to the Lachnospiraceae family (three enriched and one depleted) predicted the risk of PTE, with area under the curve (AUC) of .73. Global SCFA content was associated with the increased risk of PTE, with AUC of .722, and with 2-methylbutyric (depleted), valeric (depleted), isobutyric (enriched), and isovaleric (enriched) acids being the most important factors (AUC = .717). When the analyses of baseline microbial and SCFA compositions were combined, AUC to predict PTE increased to .78. SIGNIFICANCE: Whereas LFPI produces no perturbations in the gut microbiome that are associated with PTE, the risk of PTE can be stratified based on preexistent microbial abundances and SCFA content.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Gastrointestinal Microbiome , Animals , Brain Injuries, Traumatic/complications , Fatty Acids, Volatile , Gastrointestinal Microbiome/genetics , Humans , Rats , Rats, Sprague-Dawley
9.
Epilepsia Open ; 7 Suppl 1: S59-S67, 2022 08.
Article in English | MEDLINE | ID: mdl-34861102

ABSTRACT

Drug-resistant epilepsy (DRE) affects approximately one-third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hypothesis that posits that drug resistance is an inherent property of epilepsy related to disease severity. Seizure frequency is one measure of epilepsy severity, but frequency alone is an incomplete measure of severity and does not fully explain basic research and clinical studies on drug resistance; thus, other measures of epilepsy severity are needed. One such measure could be pathological high-frequency oscillations (HFOs), which are believed to reflect the neuronal disturbances responsible for the development of epilepsy and the generation of spontaneous seizures. In this manuscript, we will briefly review the intrinsic severity hypothesis, describe basic and clinical research on HFOs in the epileptic brain, and based on this evidence discuss whether HFOs could be a clinical measure of epilepsy severity. Understanding the mechanisms of DRE is critical for producing breakthroughs in the development and testing of novel strategies for treatment.


Subject(s)
Brain Waves , Drug Resistant Epilepsy , Epilepsy , Animals , Brain Waves/physiology , Electroencephalography , Epilepsy/drug therapy , Seizures
10.
Pharmaceuticals (Basel) ; 14(8)2021 Jul 21.
Article in English | MEDLINE | ID: mdl-34451804

ABSTRACT

Transcranial focal stimulation (TFS) is a non-invasive neuromodulation strategy with neuroprotective effects. On the other hand, 6-hidroxidopamine (6-OHDA) induces neurodegeneration of the nigrostriatal system producing modifications in the dopaminergic, serotoninergic, and histaminergic systems. The present study was conducted to test whether repetitive application of TFS avoids the biogenic amines' changes induced by the intrastriatal injection of 6-OHDA. Experiments were designed to determine the tissue content of dopamine, serotonin, and histamine in the brain of animals injected with 6-OHDA and then receiving daily TFS for 21 days. Tissue content of biogenic amines was evaluated in the cerebral cortex, hippocampus, amygdala, and striatum, ipsi- and contralateral to the side of 6-OHDA injection. Results obtained were compared to animals with 6-OHDA, TFS alone, and a Sham group. The present study revealed that TFS did not avoid the changes in the tissue content of dopamine in striatum. However, TFS was able to avoid several of the changes induced by 6-OHDA in the tissue content of dopamine, serotonin, and histamine in the different brain areas evaluated. Interestingly, TFS alone did not induce significant changes in the different brain areas evaluated. The present study showed that repetitive TFS avoids the biogenic amines' changes induced by 6-OHDA. TFS can represent a new therapeutic strategy to avoid the neurotoxicity induced by 6-OHDA.

11.
Seizure ; 90: 9-16, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34052088

ABSTRACT

Traumatic brain injury (TBI) is defined as a disturbance in brain functioning caused by an external force. The development of post traumatic epilepsy (PTE) is a serious risk associated with TBI. Indeed, other neurological impairments are also common following TBI. In this review, we analyze and discuss the most widely used and best validated rodent models of TBI, with a particular focus on their contribution to the understanding of the PTE development. Furthermore, we explore the importance of these models for the study of other neurobehavioral comorbidities associated with brain injury. The efficient and accurate diagnosis of epilepsy and other neurological comorbidities as a consequence of brain trauma should improve the survival and quality of life of patients after TBI.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Epilepsy , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Disease Models, Animal , Epilepsy/epidemiology , Epilepsy/etiology , Epilepsy, Post-Traumatic/epidemiology , Epilepsy, Post-Traumatic/etiology , Humans , Quality of Life
12.
Epilepsy Res ; 156: 106131, 2019 10.
Article in English | MEDLINE | ID: mdl-31076256

ABSTRACT

RATIONALE: The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) Centre without walls is an NIH funded multicenter consortium. One of EpiBioS4Rx projects is a preclinical post-traumatic epileptogenesis biomarker study that involves three study sites: The University of Eastern Finland, Monash University (Melbourne) and the University of California Los Angeles. Our objective is to create a platform for evaluating biomarkers and testing new antiepileptogenic treatments for post-traumatic epilepsy (PTE) using the lateral fluid percussion injury (FPI) model in rats. As only 30-50% of rats with severe lateral FPI develop PTE by 6 months post-injury, prolonged video-EEG monitoring is crucial to identify animals with PTE. Our objective is to harmonize the surgical and data collection procedures, equipment, and data analysis for chronic EEG recording in order to phenotype PTE in this rat model across the three study sites. METHODS: Traumatic brain injury (TBI) was induced using lateral FPI in adult male Sprague-Dawley rats aged 11-12 weeks. Animals were divided into two cohorts: a) the long-term video-EEG follow-up cohort (Specific Aim 1), which was implanted with EEG electrodes within 24 h after the injury; and b) the magnetic resonance imaging (MRI) follow-up cohort (Specific Aim 2), at 5 months after lateral FPI. Four cortical epidural screw electrodes (2 ipsilateral, 2 contralateral) and three intracerebral bipolar electrodes were implanted (septal CA1 and the dentate gyrus, layers II and VI of the perilesional cortex both anterior and posterior to the injury site). During the 7th post-TBI month, animals underwent 4 weeks of continuous video-EEG recordings to diagnose of PTE. RESULTS: All centers harmonized the induction of TBI and surgical procedures for the implantation of EEG recordings, utilizing 4 or more EEG recording channels to cover areas ipsilateral and contralateral to the brain injury, perilesional cortex and the hippocampus and dentate gyrus. Ground and reference screw electrodes were implanted. At all sites the minimum sampling rate was 512 Hz, utilizing a finite impulse response (FIR) and impedance below 10 KΩ through the entire recording. As part of the quality control criteria we avoided electrical noise, and monitoring changes in impedance over time and the appearance of noise on the recordings. To reduce electrical noise, we regularly checked the integrity of the cables, stability of the EEG recording cap and the appropriate connection of the electrodes with the cables. Following the pipeline presented in this article and after applying the quality control criteria to our EEG recordings all of the sites were successful to phenotype seizure in chronic EEG recordings of animals after TBI. DISCUSSION: Despite differences in video-EEG acquisition equipment used, the three centers were able to consistently phenotype seizures in the lateral fluid-percussion model applying the pipeline presented here. The harmonization of methodology will help to improve the rigor of preclinical research, improving reproducibility of pre-clinical research in the search of biomarkers and therapies to prevent antiepileptogenesis.


Subject(s)
Brain Injuries, Traumatic/pathology , Cerebral Cortex/pathology , Epilepsy, Post-Traumatic/pathology , Seizures , Animals , Biomarkers/analysis , Disease Models, Animal , Male , Phenotype , Rats, Sprague-Dawley , Video Recording/methods
13.
Epilepsy Res ; 156: 106110, 2019 10.
Article in English | MEDLINE | ID: mdl-30981541

ABSTRACT

Studies of chronic epilepsy show pathological high frequency oscillations (HFOs) are associated with brain areas capable of generating epileptic seizures. Only a few of these studies have focused on HFOs during the development of epilepsy, but results suggest pathological HFOs could be a biomarker of epileptogenesis. The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy" (EpiBioS4Rx) is a multi-center project designed to identify biomarkers of epileptogenesis after a traumatic brain injury (TBI) and evaluate treatments that could modify or prevent the development of post-traumatic epilepsy. One goal of the EpiBioS4Rx project is to assess whether HFOs could be a biomarker of post-traumatic epileptogenesis. The current study describes the work towards this goal, including the development of common surgical procedures and EEG protocols, an interim analysis of the EEG for HFOs, and identifying issues that need to be addressed for a robust biomarker analysis. At three participating sites - University of Eastern Finland (UEF), Monash University in Melbourne (Melbourne) and University of California, Los Angeles (UCLA) - TBI was induced in adult male Sprague-Dawley rats by lateral fluid-percussion injury. After injury and in sham-operated controls, rats were implanted with screw and microwire electrodes positioned in neocortex and hippocampus to record EEG. A separate group of rats had serial magnetic resonance imaging after injury and then implanted with electrodes at 6 months. Recordings 28 days post-injury were available from UEF and UCLA, but not Melbourne due to technical issues with their EEG files. Analysis of recordings from 4 rats - UEF and UCLA each had one TBI and one sham-operated control - showed EEG contained evidence of HFOs. Computer-automated algorithms detected a total of 1,819 putative HFOs and of these only 40 events (2%) were detected by all three sites. Manual review of all events verified 130 events as HFO and the remainder as false positives. Review of the 40 events detected by all three sites was associated with 88% agreement. This initial report from the EpiBioS4Rx Consortium demonstrates the standardization of EEG electrode placements, recording protocol and long-term EEG monitoring, and differences in detection algorithm HFO results between sites. Additional work on detection strategy, detection algorithm performance, and training in HFO review will be performed to establish a robust, preclinical evaluation of HFOs as a biomarker of post-traumatic epileptogenesis.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Brain Waves/physiology , Epilepsy, Post-Traumatic/physiopathology , Neocortex/physiopathology , Animals , Disease Models, Animal , Electrodes, Implanted/psychology , Male , Percussion , Rats, Sprague-Dawley
14.
Epilepsy Res ; 151: 7-16, 2019 03.
Article in English | MEDLINE | ID: mdl-30711714

ABSTRACT

Multi-center preclinical studies can facilitate the discovery of biomarkers of antiepileptogenesis and thus facilitate the diagnosis and treatment development of patients at risk of developing post-traumatic epilepsy. However, these studies are often limited by the difficulty in harmonizing experimental protocols between laboratories. Here, we assess whether the production of traumatic brain injury (TBI) using the lateral fluid-percussion injury (FPI) in adult male Sprague-Dawley rats (12 weeks at the time of injury) was harmonized between three laboratories - located in the University of Eastern Finland (UEF), Monash University in Melbourne, Australia (Melbourne) and The University of California, Los Angeles, USA (UCLA). These laboratories are part of the international multicenter-based project, the Epilepsy Bioinformatics Study for Antiepileptogenesis Therapy (EpiBioS4Rx). Lateral FPI was induced in adult male Sprague-Dawley rats. The success of methodological harmonization was assessed by performing inter-site comparison of injury parameters including duration of anesthesia during surgery, impact pressure, post-impact transient apnea, post-impact seizure-like behavior, acute mortality (<72 h post-injury), time to self-right after the impact, and severity of the injury (assessed with the neuroscore). The data was collected using Common Data Elements and Case Report Forms. The acute mortality was 15% (UEF), 50% (Melbourne) and 57% (UCLA) (p < 0.001). The sites differed in the duration of anesthesia, the shortest being at UEF < Melbourne < UCLA (p < 0.001). The impact pressure used also differed between the sites, the highest being in UEF > Melbourne > UCLA (p < 0.001). The impact pressure associated with the severity of the functional deficits (low neuroscore) (P < 0.05) only at UEF, but not at any of the other sites. Additionally, the sites differed in the duration of post-impact transient apnea (p < 0.001) and time to self-right (P < 0.001), the highest values in both parameters was registered in Melbourne. Post-impact seizure-like behavior was observed in 51% (UEF), 25% (Melbourne) and 2% (UCLA) of rats (p < 0.001). Despite the differences in means when all sites were compared there was significant overlap in injury parameters between the sites. The data reflects the technical difficulties in the production of lateral FPI across multiple sites. On the other hand, the data can be used to model the heterogeneity in human cohorts with closed-head injury. Our animal cohort will provide a good starting point to investigate the factors associated with epileptogenesis after lateral FPI.


Subject(s)
Brain Injuries/complications , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/metabolism , International Cooperation , Animals , Anticonvulsants , Disease Models, Animal , Electroencephalography , Epilepsy, Post-Traumatic/diagnostic imaging , Epilepsy, Post-Traumatic/drug therapy , Female , Humans , Magnetic Resonance Imaging , Male , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric
15.
Neurobiol Dis ; 123: 69-74, 2019 03.
Article in English | MEDLINE | ID: mdl-29883622

ABSTRACT

Post-traumatic epilepsy is the architype of acquired epilepsies, wherein a brain insult initiates an epileptogenic process culminating in an unprovoked seizure after weeks, months or years. Identifying biomarkers of such process is a prerequisite for developing and implementing targeted therapies aimed at preventing the development of epilepsy. Currently, there are no validated electrophysiological biomarkers of post-traumatic epileptogenesis. Experimental EEG studies using the lateral fluid percussion injury model have identified three candidate biomarkers of post-traumatic epileptogenesis: pathological high-frequency oscillations (HFOs, 80-300 Hz); repetitive HFOs and spikes (rHFOSs); and reduction in sleep spindle duration and dominant frequency at the transition from stage III to rapid eye movement sleep. EEG studies in humans have yielded conflicting data; recent evidence suggests that epileptiform abnormalities detected acutely after traumatic brain injury carry a significantly increased risk of subsequent epilepsy. Well-designed studies are required to validate these promising findings, and ultimately establish whether there are post-traumatic electrophysiological features which can guide the development of 'antiepileptogenic' therapies.


Subject(s)
Biomarkers , Brain Injuries, Traumatic/diagnostic imaging , Brain Waves , Brain/physiopathology , Epilepsy, Post-Traumatic/diagnostic imaging , Animals , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/physiopathology , Disease Progression , Electrophysiological Phenomena , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/physiopathology , Humans , Sleep/physiology
16.
Epilepsy Res ; 149: 92-101, 2019 01.
Article in English | MEDLINE | ID: mdl-30553097

ABSTRACT

The Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) is an international, multicenter, multidisciplinary study aimed at preventing epileptogenesis (EpiBioS4Rx: https://epibios.loni.usc.edu/). One of the study's major objectives is the discovery of diagnostic, prognostic, and predictive plasma protein and microRNA (miRNA) biomarkers that are sensitive, specific, and translatable to the human condition. Epilepsy due to structural brain abnormalities, secondary to neurological insults such as traumatic brain injury (TBI), currently represents ∼50% of all epilepsy cases. In the preclinical EpiBioS4Rx study, TBI was induced in adult male Sprague Dawley rats using a standardized protocol for lateral fluid-percussion injury. Whole blood was collected from the tail vein at baseline and 2, 9 and 30 days post-injury and processed for plasma separation. Biomaterial properties, sample preparation and integrity, and choice of analysis platform can significantly impact measured marker levels and, in turn, interpretation with respect to injury and/or other variables. We present here the results of procedural harmonization for the first 320 rats included in the EpiBioS4Rx study study, from three international research centers, and preliminary proteomic and miRNA analyses. We also discuss experimental considerations for establishing rigorous quality controls with the goal of harmonizing operating procedures across study sites, and delivering high-quality specimens for preclinical biomarker discovery in a rat model of post-traumatic epilepsy (PTE).


Subject(s)
Blood Proteins/metabolism , Epilepsy, Post-Traumatic/metabolism , Homeostasis/physiology , MicroRNAs/metabolism , Animals , Biomarkers/metabolism , Computational Biology , Disease Models, Animal , Hemoglobins/metabolism , International Cooperation , MicroRNAs/genetics , Nerve Tissue Proteins/metabolism , Protein Array Analysis , Proteomics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Statistics, Nonparametric , Time Factors
17.
Epilepsy Behav ; 88: 283-294, 2018 11.
Article in English | MEDLINE | ID: mdl-30336420

ABSTRACT

Synaptic vesicle protein 2A (SV2A) has become an attractive target of investigation because of its role in the pathophysiology of epilepsy; SV2A is expressed ubiquitously throughout the brain in all nerve terminals independently of their neurotransmitter content and plays an important but poorly defined role in neurotransmission. Previous studies have shown that modifications in the SV2A protein expression could be a direct consequence of disease severity. Furthermore, these SV2A modifications may depend on specific changes in the nerve tissue following the induction of epilepsy and might be present in both excitatory and inhibitory terminals. Thus, we evaluated SV2A protein expression throughout the hippocampi of lithium-pilocarpine rats after status epilepticus (SE) and during early and late epilepsy. In addition, we determined the γ-aminobutyric acid (GABA)ergic or glutamatergic nature associated with SV2A modifications. Wistar rats were treated with lithium-pilocarpine to induce SE and subsequently were shown to present spontaneous recurrent seizures (SRS). Later, we conducted an exhaustive semi-quantitative analysis of SV2A optical density (OD) throughout the hippocampus by immunohistochemistry. Levels of the SV2A protein were substantially increased in layers formed by principal neurons after SE, mainly because of GABAergic activity. No changes were observed in the early stage of epilepsy. In the late stage of epilepsy, there were minor changes in SV2A OD compared with the robust modifications of SE; however, SV2A protein expression generally showed an increment reaching significant differences in two dendritic layers and hilus, without clear modifications of GABAergic or glutamatergic systems. Our results suggest that the SV2A variations may depend on several factors, such as neuronal activity, and might appear in both excitatory and inhibitory systems depending on the epilepsy stage.


Subject(s)
Hippocampus/metabolism , Lithium Chloride/toxicity , Membrane Glycoproteins/biosynthesis , Nerve Tissue Proteins/biosynthesis , Pilocarpine/toxicity , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Animals , Disease Models, Animal , Gene Expression , Hippocampus/drug effects , Male , Membrane Glycoproteins/genetics , Nerve Tissue Proteins/genetics , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Status Epilepticus/genetics
18.
Neurochem Int ; 120: 224-232, 2018 11.
Article in English | MEDLINE | ID: mdl-30213635

ABSTRACT

Status epilepticus (SE) is a neurological condition that frequently induces severe neuronal injury in the hippocampus, subsequent epileptogenesis and pharmacoresistant spontaneous recurrent seizures (SRS). The repeated administration of LEV (a broad-spectrum antiepileptic drug) during the post-SE period does not prevent the subsequent development of SRS. However, this treatment reduces SE-induced neurodegeneration in the hippocampus. Conversely, propylparaben (PPB) is a widely used antimicrobial that blocks voltage-dependent Na+ channels, induces neuroprotection and reduces epileptiform activity in vitro. The present study attempted to determine if the neuroprotective effects induced by LEV are augmented when combined with a sub-effective dose of PPB. Long-term SE-induced consequences (hyperexcitability, high glutamate release, neuronal injury and volume loss) were evaluated in the hippocampus of rats. LEV alone, as well as combined with PPB, did not prevent the occurrence of SRS. However, animals treated with LEV plus PPB showed high prevalence of low frequency oscillations (0.1-4 Hz and 8-90 bands, p < 0.001) and low prevalence of high frequency activity (90-250 bands, p < 0.001) during the interictal period. In addition, these animals presented lower extracellular levels of glutamate, decreased rate of neurodegeneration and a similar hippocampal volume compared to the control conditions. This study's results suggest that LEV associated with PPB could represent a new therapeutic strategy to reduce long-term consequences induced by SE that facilitate pharmacoresistant SRS.


Subject(s)
Hippocampus/drug effects , Levetiracetam/pharmacology , Parabens/pharmacology , Status Epilepticus/drug therapy , Time , Animals , Anticonvulsants/pharmacology , Behavior, Animal/drug effects , Disease Models, Animal , Lithium/pharmacology , Male , Neurons/drug effects , Neuroprotective Agents/pharmacology , Pilocarpine/pharmacology , Rats, Wistar , Seizures/drug therapy , Status Epilepticus/chemically induced
19.
Epilepsy Behav ; 87: 200-206, 2018 10.
Article in English | MEDLINE | ID: mdl-30115604

ABSTRACT

Several studies indicate that sodium cromoglycate (CG) induces neuroprotective effects in acute neurological conditions. The present study focused on investigating if the use of CG in rats during the post-status epilepticus (post-SE) period reduces the acute and long-term consequences of seizure activity. Our results revealed that animals that received a single dose of CG (50 mg/kg s.c.: subcutaneously) during the post-SE period showed a lower number of neurons in the process of dying in the dentate gyrus, hilus, cornu ammonis 1 (CA1), and CA3 of the dorsal hippocampus than the rats that received the vehicle. However, this effect was not evident in layers V-VI of the sensorimotor cortex or the lateral-posterior thalamic nucleus. A second experiment showed that animals that received CG subchronically (50 mg/kg s.c. every 12 h for 5 days followed by 24 mg/kg/day s.c. for 14 days using osmotic minipumps) after SE presented fewer generalized convulsive seizures and less neuronal damage in the lateral-posterior thalamic nucleus but not in the hippocampus or cortex. Our data indicate that CG can be used as a therapeutic strategy to reduce short- and long-term neuronal damage in the hippocampus and thalamus, respectively. The data also indicate that CG can reduce the expression of generalized convulsive spontaneous seizures when it is given during the latent period of epileptogenesis.


Subject(s)
Cromolyn Sodium/therapeutic use , Status Epilepticus/drug therapy , Status Epilepticus/pathology , Animals , Cromolyn Sodium/pharmacology , Dentate Gyrus/drug effects , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Male , Neurons/drug effects , Neurons/physiology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats , Rats, Wistar , Status Epilepticus/physiopathology , Time Factors
20.
Neurotoxicology ; 59: 110-120, 2017 03.
Article in English | MEDLINE | ID: mdl-28174044

ABSTRACT

Propylparaben (PPB) induces cardioprotection after ischemia-reperfusion injury by inhibiting voltage-dependent Na+ channels. The present study focuses on investigating whether the i.p. application of 178mg/kg PPB after pilocarpine-induced status epilepticus (SE) reduces the acute and long-term consequences of seizure activity. Initially, we investigated the effects of a single administration of PPB after SE. Our results revealed that compared to rats receiving diazepam (DZP) plus vehicle after 2h of SE, animals receiving a single dose of PPB 1h after DZP injection presented 126% (p<0.001) lower extracellular levels of glutamate in the hippocampus. This effect was associated with an increased potency of low-frequency oscillations (0.1-13Hz bands, p<0.001), a reduced potency of 30-250Hz bands (p<0.001) and less neuronal damage in the hippocampus. The second experiment examined whether the subchronic administration of PPB during the post-SE period is able to prevent the long-term consequences of seizure activity. In comparison to animals that were treated subchronically with vehicle after SE, rats administered with PPB for 5 days presented lower hippocampal excitability and interictal glutamate release, astrogliosis, and neuroprotection in the dentate gyrus. Our data indicate that PPB, when applied after SE, can be used as a therapeutic strategy to reduce the consequences of seizure activity.


Subject(s)
Action Potentials/drug effects , Anticonvulsants/therapeutic use , Glutamic Acid/metabolism , Hippocampus/drug effects , Parabens/therapeutic use , Status Epilepticus/drug therapy , Animals , Cell Count , Diazepam/therapeutic use , Disease Models, Animal , Electric Stimulation , Fluoresceins/metabolism , Glial Fibrillary Acidic Protein/metabolism , Hippocampus/metabolism , Hippocampus/pathology , Male , Muscarinic Agonists/toxicity , Phosphopyruvate Hydratase/metabolism , Pilocarpine/toxicity , Rats , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...