Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Mol Res ; 7(3): 839-52, 2008 Sep 16.
Article in English | MEDLINE | ID: mdl-18949703

ABSTRACT

Nutrigenomics studies the effects of nutrients on the genome, transcriptome and proteome of organisms, and here an evolutionary standpoint on this new discipline is presented. It is well known that metazoan organisms are unable to synthesize all amino acids necessary to produce their proteins and that these essential amino acids (EAA) must be acquired from the diet. Here, we tested the hypothesis that conserved regions such as protein domains (DM) have different essentiality indexes and use different sets of amino acids when compared to extra-domains (ED) and proteins without mapped domains (WD). We found that auxotrophic organisms have a tendency to use less EAAs in DM than do prototrophic ones. Looking into the amino acid usage of eukaryotic proteins downloaded from KEGG and COG, we showed that WD have a usage of amino acids closer to DM, which suggests that proteins without mapped domains behave as large domains. Using an ED index that shows the proportion of prevalent amino acids in ED, a differential usage of amino acids in domains versus extra-domains was demonstrated. Protein domains were shown to be enriched with a higher number of EAA, and it may be related to the fact that these amino acids had lost their biosynthetic pathways in metazoans during a great amino acid pathway deletion, followed by a nutritional constraint that may have happened close to the conquest of the terrestrial environment. Thus, the proportion of EAA outside domains could have decreased during evolution due to nutritional constraints.


Subject(s)
Amino Acids, Essential/metabolism , Eukaryotic Cells/metabolism , Nutrigenomics/methods , Proteins/metabolism , Amino Acids, Essential/genetics , Animals , Evolution, Molecular , Protein Structure, Tertiary , Proteins/chemistry , Proteins/genetics
2.
Genet Mol Res ; 7(3): 910-24, 2008 Sep 30.
Article in English | MEDLINE | ID: mdl-18949709

ABSTRACT

A procedure to recruit members to enlarge protein family databases is described here. The procedure makes use of UniRef50 clusters produced by UniProt. Current family entries are used to recruit additional members based on the UniRef50 clusters to which they belong. Only those additional UniRef50 members that are not fragments and whose length is within a restricted range relative to the original entry are recruited. The enriched dataset is then limited to contain only genomes from selected clades. We used the COG database - used for genome annotation and for studies of phylogenetics and gene evolution - as a model. To validate the method, a UniRef-Enriched COG0151 (UECOG) was tested with distinct procedures to compare recruited members with the recruiters: PSI-BLAST, secondary structure overlap (SOV), Seed Linkage, COGnitor, shared domain content, and neighbor-joining single-linkage, and observed that the former four agree in their validations. Presently, the UniRef50-based recruitment procedure enriches the COG database for Archaea, Bacteria and its subgroups Actinobacteria, Firmicutes, Proteobacteria, and other bacteria by 2.2-, 8.0-, 7.0-, 8.8-, 8.7-, and 4.2-fold, respectively, in terms of sequences, and also considerably increased the number of species.


Subject(s)
Computational Biology/methods , Databases, Protein , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...