Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38203505

ABSTRACT

The adsorption of proteins onto surfaces significantly impacts biomaterials, medical devices, and biological processes. This study aims to provide insights into the irreversible adsorption process of multiprotein complexes, particularly focusing on the interaction between anti-His6 IgG antibodies and the His6-tagged P2X2 receptor. Traditional approaches to understanding protein adsorption have centered around kinetic and thermodynamic models, often examining individual proteins and surface coverage, typically through Molecular Dynamics (MD) simulations. In this research, we introduce a computational approach employing Autodesk Maya 3D software for the investigation of multiprotein complexes' adsorption behavior. Utilizing Atomic Force Microscopy (AFM) imaging and Maya 3D-based mechanical simulations, our study yields real-time structural and kinetic observations. Our combined experimental and computational findings reveal that the P2X2 receptor-IgG antibody complex likely undergoes absorption in an 'extended' configuration. Whereas the P2X2 receptor is less adsorbed once is complexed to the IgG antibody compared to its individual state, the opposite is observed for the antibody. This insight enhances our understanding of the role of protein-protein interactions in the process of protein adsorption.


Subject(s)
Immunoglobulin G , Molecular Dynamics Simulation , Adsorption , Receptors, Purinergic P2X2 , Microscopy, Atomic Force , Multiprotein Complexes
2.
Neuron ; 102(5): 976-992.e5, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31053408

ABSTRACT

Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells.


Subject(s)
Purkinje Cells/metabolism , Receptors, AMPA/metabolism , Allosteric Regulation , Allosteric Site , Alternative Splicing , Animals , Cerebellum/cytology , Cerebellum/metabolism , Cryoelectron Microscopy , Crystallography, X-Ray , HEK293 Cells , Humans , Ion Channel Gating , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Mice , Microscopy, Atomic Force , Patch-Clamp Techniques , Protein Domains , Protein Isoforms/genetics , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptors, AMPA/genetics , Receptors, AMPA/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...