Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(22): 32925-32935, 2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114967

ABSTRACT

Photon pair sources in the visible to NIR wavelength region play a key role in quantum optics. The wavelength range around 800 nm provides an opportunity for using low cost detectors, which makes it highly interesting for practical, large scale quantum applications. Here, we report on the realization of single mode Rubidium (Rb) exchanged waveguides in periodically poled (PP) Potassium Titanyl Phosphate (Rb:KTiOPO4 or Rb:KTP) for frequency-non-degenerate type II parametric down-conversion pumped at 400 nm and generating pairs of photons at around 800 nm. The source exhibits a nonlinear conversion efficiency of 2.0%/(Wcm2), estimated from SHG measurements. Characterisation of the generated two-photon state confirms nonclassical photon-number correlations, characterized by g(1,1). The high nonlinear conversion efficiency and low temperature sensitivity make this source a promising candidate for operations in both classical and quantum integrated network applications.

2.
Opt Express ; 28(17): 24353-24362, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32906977

ABSTRACT

Integrated χ(2) devices are a widespread tool for the generation and manipulation of light fields, since they exhibit high efficiency, a small footprint and the ability to interface them with fibre networks. Surprisingly, some commonly used material substrates are not yet fully understood, in particular potassium titanyl phosphate (KTP). A thorough understanding of the fabrication process of waveguides in this material and analysis of their properties is crucial for the realization and the engineering of high efficiency devices for quantum applications. In this paper we present our studies on rubidium-exchanged waveguides fabricated in KTP. Employing energy dispersive X-ray spectroscopy (EDX), we analysed a set of waveguides fabricated with different production parameters in terms of time and temperature. We find that the waveguide depth is dependent on their widths by reconstructing the waveguide depth profiles. Narrower waveguides are deeper, contrary to the theoretical model usually employed. Moreover, we found that the variation of the penetration depth with the waveguide width is stronger at higher temperatures and times. We attribute this behaviour to stress-induced variation in the diffusion process.

3.
Opt Express ; 28(4): 5507-5518, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121769

ABSTRACT

The characterisation of loss in optical waveguides is essential in understanding the performance of these devices and their limitations. Whilst interferometric-based methods generally provide the best results for low-loss waveguides, they are almost exclusively used to provide characterization in cases where the waveguide is spatially single-mode. Here, we introduce a Fabry-Pérot-based scheme to estimate the losses of a nonlinear (birefringent or quasi-phase matched) waveguide at a wavelength where it is multi-mode. The method involves measuring the generated second harmonic power as the pump wavelength is scanned over the phase matching region. Furthermore, it is shown that this method allows one to infer the losses of different second harmonic spatial modes by scanning the pump field over the separated phase matching spectra. By fitting the measured phase matching spectra from different titanium indiffused lithium niobate waveguides to the model presented in this paper, it is shown that one can estimate the second harmonic losses of a single spatial-mode, at wavelengths where the waveguides are spatially multi-mode.

4.
Opt Express ; 28(3): 3215-3225, 2020 Feb 03.
Article in English | MEDLINE | ID: mdl-32121994

ABSTRACT

Counter-propagating parametric conversion processes in non-linear bulk crystals have been shown to feature unique properties for efficient narrowband frequency conversion. In quantum optics, the generation of photon pairs with a counter-propagating parametric down-conversion process (PDC) in a waveguide, where signal and idler photons propagate in opposite directions, offers unique material-independent engineering capabilities. However, realizing counter-propagating PDC necessitates quasi-phase-matching (QPM) with extremely short poling periods. Here, we report on the generation of counter-propagating single-photon pairs in a self-made periodically poled lithium niobate waveguide with a poling period on the same order of magnitude as the generated wavelength. The single photons of the biphoton state bridge GHz and THz bandwidths with a separable joint temporal-spectral behavior. Furthermore, they allow the direct observation of the temporal envelope of heralded single photons with state-of-the art photon counters.

5.
Opt Lett ; 44(22): 5398-5401, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730067

ABSTRACT

In this Letter, we derive a framework to understand the effect of imperfections on the phase-matching spectrum of a wide class of nonlinear systems. We show that this framework is applicable to many physical systems, such as waveguides or fibers. Furthermore, this treatment reveals that the product of the system length and magnitude of the imperfections completely determines the phase-matching properties of these systems, thus offering a general rule for system design. Additionally, our framework provides a simple method to compare the performance of a wide range of nonlinear systems.

6.
Opt Express ; 26(22): 28827-28833, 2018 Oct 29.
Article in English | MEDLINE | ID: mdl-30470053

ABSTRACT

Waveguide circuits play a key role in modern integrated optics and provide an appealing approach to scalability in quantum optics. We report on periodically poled ridge waveguides in z-cut potassium titanyl phosphate (KTiOPO4 or KTP), a material that has recently received growing interest due to its unique dispersion properties. Ridges were defined in surface-near rubidium-exchanged KTP by use of a precise diamond-blade dicing saw. We fabricated single-mode ridge waveguides at around 800 nm which exhibit widths of 1.9-3.2 µm and facilitated type-II second harmonic generation from 792 nm to 396 nm with high efficiency of 6.6 %/W·cm2. Temperature dependence of the second harmonic process was found to be 53 pm/K. The low temperature dependence and high nonlinear conversion efficiency make our waveguides ideally suited for future operations in classical nonlinear integrated optics and integrated quantum networking applications.

7.
Nat Commun ; 7: 11339, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27088483

ABSTRACT

The transfer of data is a fundamental task in information systems. Microprocessors contain dedicated data buses that transmit bits across different locations and implement sophisticated routing protocols. Transferring quantum information with high fidelity is a challenging task, due to the intrinsic fragility of quantum states. Here we report on the implementation of the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at a different location. On a single device we perform three routing procedures on entangled states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining quantum information encoded in the polarization state of the photonic qubit. Our results demonstrate the key principle of perfect state transfer, opening a route towards data transfer for quantum computing systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...