Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 106(5-2): 055002, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559440

ABSTRACT

Linkages are mechanical devices constructed from rigid bars and freely rotating joints studied both for their utility in engineering and as mathematical idealizations in a number of physical systems. Recently, there has been a resurgence of interest in designing linkages in the physics community due to the concurrent developments of mechanical metamaterials, topological mechanics, and the discovery of anomalous rigidity in fiber networks and vertex models. These developments raise a natural question: to what extent can the motion of a linkage or mechanical structure be designed? Here, we describe a method to design the topology of the configuration space of a linkage by first identifying the manifold of critical points, then perturbing around such critical configurations. Unlike other methods, our methods are tractable and provide a simple visual toolkit for mechanism design. We demonstrate our procedure by designing a mechanism to gate the propagation of a soliton in a Kane-Lubensky chain of interconnected rotors.

2.
Phys Rev E ; 101(4-1): 043003, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32422808

ABSTRACT

Origami structures have been proposed as a means of creating three-dimensional structures from the micro- to the macroscale and as a means of fabricating mechanical metamaterials. The design of such structures requires a deep understanding of the kinematics of origami fold patterns. Here we study the configurations of non-Euclidean origami, folding structures with Gaussian curvature concentrated on the vertices, for arbitrary origami fold patterns. The kinematics of such structures depends crucially on the sign of the Gaussian curvature. As an application of our general results, we show that the configuration space of nonintersecting, oriented vertices with positive Gaussian curvature decomposes into disconnected subspaces; there is no pathway between them without tearing the origami. In contrast, the configuration space of negative Gaussian curvature vertices remains connected. This provides a new, and only partially explored, mechanism by which the mechanics and folding of an origami structure could be controlled.

3.
Phys Rev Lett ; 116(13): 135501, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27081987

ABSTRACT

Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.

4.
Phys Rev Lett ; 109(13): 134301, 2012 Sep 28.
Article in English | MEDLINE | ID: mdl-23030091

ABSTRACT

An arch will grow on a rapidly deployed thin string in contact with a rigid plane. We present a qualitative model for the growing structure involving the amplification, rectification, and advection of slack in the presence of a steady stress field, validate our assumptions with numerical experiments, and pose new questions about the spatially developing motions of thin objects.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036603, 2011 Sep.
Article in English | MEDLINE | ID: mdl-22060518

ABSTRACT

Recent experiments have imposed controlled swelling patterns on thin polymer films, which subsequently buckle into three-dimensional shapes. We develop a solution to the design problem suggested by such systems, namely, if and how one can generate particular three-dimensional shapes from thin elastic sheets by mere imposition of a two-dimensional pattern of locally isotropic growth. Not every shape is possible. Several types of obstruction can arise, some of which depend on the sheet thickness. We provide some examples using the axisymmetric form of the problem, which is analytically tractable.

6.
Eur Phys J E Soft Matter ; 20(3): 335-46, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16871367

ABSTRACT

We study the cylinder to sphere morphological transition of diblock copolymers in aqueous solution with a hydrophobic block and a charged block. We find a metastable undulated cylinder configuration for a range of charge and salt concentrations which, nevertheless, occurs above the threshold where spheres are thermodynamically favorable. By modeling the shape of the cylinder ends, we find that the free-energy barrier for the transition from cylinders to spheres is quite large and that this barrier falls significantly in the limit of high polymer charge and low solution salinity. This suggests that observed undulated cylinder phases are kinetically trapped structures.

7.
Eur Phys J E Soft Matter ; 13(4): 335-44, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15170532

ABSTRACT

We investigate the effect of counterion fluctuations in a single polyelectrolyte brush in the absence of added salt by systematically expanding the counterion free energy about Poisson-Boltzmann mean-field theory. We find that for strongly charged brushes, there is a collapse regime in which the brush height decreases with increasing charge on the polyelectrolyte chains. The transition to this collapsed regime is similar to the liquid-gas transition, which has a first-order line terminating at a critical point. We find that, for monovalent counterions, the transition is discontinuous in theta solvent, while for multivalent counterions, the transition is generally continuous. For collapsed brushes, the brush height is not independent of grafting density as it is for osmotic brushes, but scales linear with it.


Subject(s)
Biophysics/methods , Electrolytes/chemistry , Ions , Polymers/chemistry , Models, Statistical , Salts/chemistry , Thermodynamics
8.
Phys Rev Lett ; 91(4): 045506, 2003 Jul 25.
Article in English | MEDLINE | ID: mdl-12906676

ABSTRACT

It is typical in smectic liquid crystals to describe elastic deformations with a linear theory when the elastic strain is small. In smectics, certain essential nonlinearities arise from the requirement of rotational invariance. By employing the Bogomol'nyi, Prasad, and Sommerfield decomposition and relying on boundary conditions and geometric invariants, we have found a large class of exact solutions. We introduce an approximation for the deformation profile far from a spherical inclusion and find an enhanced attractive interaction at long distances due to the nonlinear elasticity, confirmed by numerical minimization.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(6 Pt 1): 061501, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12513286

ABSTRACT

Myelin figures are densely packed stacks of coaxial cylindrical bilayers that are unstable to the formation of coils or double helices. These myelin figures appear to have no intrinsic chirality. We show that such cylindrical membrane stacks can develop an instability when they acquire a spontaneous curvature or when the equilibrium distance between membranes is decreased. This instability breaks the chiral symmetry of the stack and may result in coiling. A unilamellar cylindrical vesicle, on the other hand, will develop an axisymmetric instability, possibly related to the pearling instability.

SELECTION OF CITATIONS
SEARCH DETAIL
...