Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35159819

ABSTRACT

The photocatalytic reduction of carbon dioxide (CO2) into value-added chemicals is considered to be a green and sustainable technology, and has recently gained considerable research interest. In this work, titanium dioxide (TiO2) supported Pt, Pd, Ni, and Cu catalysts were synthesized by photodeposition. The formation of various metal species on an anatase TiO2 surface, after ultraviolet (UV) light irradiation, was investigated insightfully by the X-ray absorption near edge structure (XANES) technique. CO2 reduction under UV-light irradiation at an ambient pressure was demonstrated. To gain an insight into the charge recombination rate during reduction, the catalysts were carefully investigated by the intensity modulated photocurrent spectroscopy (IMPS) and photoluminescence spectroscopy (PL). The catalytic behaviors of the catalysts were investigated by density functional theory using the self-consistent Hubbard U-correction (DFT+U) approach. In addition, Mott-Schottky measurement was employed to study the effect of energy band alignment of metal-semiconductor on CO2 photoreduction. Heterojunction formed at Pt-, Pd-, Ni-, and Cu-TiO2 interface has crucial roles on the charge recombination and the catalytic behaviors. Furthermore, it was found that Pt-TiO2 provides the highest methanol yield of 17.85 µmol/gcat/h, and CO as a minor product. According to the IMPS data, Pt-TiO2 has the best charge transfer ability, with the mean electron transit time of 4.513 µs. We believe that this extensive study on the junction between TiO2 could provide a profound understanding of catalytic behaviors, which will pave the way for rational designs of novel catalysts with improved photocatalytic performance for CO2 reduction.

2.
J Phys Chem B ; 123(2): 407-418, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30522268

ABSTRACT

Serine hydroxymethyltransferase (SHMT) is a pyridoxal phosphate (PLP)-dependent enzyme that catalyzes the reversible conversion of serine and tetrahydrofolate (THF) to glycine and 5,10-methylene THF. SHMT is a folate pathway enzyme and is therefore of considerable medical interest due to its role as an important intervention point for antimalarial, anticancer, and antibacterial treatments. Despite considerable experimental effort, the precise reaction mechanism of SHMT remains unclear. In this study, we explore the mechanism of SHMT to determine the roles of active site residues and the nature and the sequence of chemical steps. Molecular dynamics (MD) methods were employed to generate a suitable starting structure which then underwent analysis using hybrid quantum mechanical/molecular mechanical (QM/MM) simulations. The QM region consisted of 12 key residues, two substrates, and explicit solvent. Our results show that the catalytic reaction proceeds according to a retro-aldol synthetic process with His129 acting as the general base in the reaction. The rate-determining step involves the cleavage of the PLP-serine aldimine Cα-Cß bond and the formation of formaldehyde in line with experimental evidence. The pyridyl ring of the PLP-serine aldimine substrate exists in deprotonated form, being stabilized directly by Asp208 via a strong H-bond, as well as through interactions with Arg371, Lys237, and His211, and with the surrounding protein which was electrostatically embedded. This knowledge has the potential to impact the design and development of new inhibitors.


Subject(s)
Glycine Hydroxymethyltransferase/chemistry , Biocatalysis , Catalytic Domain , Models, Chemical , Molecular Dynamics Simulation , Plasmodium vivax/enzymology , Pyridoxal Phosphate/chemistry , Quantum Theory , Serine/chemistry , Tetrahydrofolates/chemistry
3.
J Mol Graph Model ; 87: 250-256, 2019 03.
Article in English | MEDLINE | ID: mdl-30594033

ABSTRACT

Chorismate synthase (CS) catalyzes the conversion of 5-enolpyruvylshikimate-3-phosphate (EPSP) to chorismate which is a key intermediate in the biosynthesis of aromatic amino acids. CS enzyme is a new target for antibacterial drugs. Even though several reaction mechanisms have been proposed, the catalytic mechanism is still unclear. QM/MM adiabatic mapping calculations were performed in order to investigate roles of this enzyme. High-accuracy SCS-MP2/aVDZ/CHARMM27 calculations indicated that the reaction pathway has three steps; (i) proton transfer from reduced flavin mononucleotide (FMNH2) to D339, (ii) proton transfer from EPSP to FMNH- and (iii) phosphate elimination. Adiabatic mapping calculations indicated that H110 and R48 residues play essential catalyst roles for CS enzyme catalysis by transition state (TS) and product stabilizations via charge polarization and hydrogen bonding to EPSP and/or FMNH2. A high accuracy calculation - SCS-MP2/aVDZ/CHARMM27 method was employed to obtain the accurate reaction mechanism pathway and to evaluate the effect of amino acid residues in the active site on the enzyme catalysis. The potential energy barriers of the reactions of H110A and R48A were found to increase. The CS catalysis was consequently slowed down due to missing the TS and product stabilizations.


Subject(s)
Models, Molecular , Mutation , Phosphorus-Oxygen Lyases/chemistry , Phosphorus-Oxygen Lyases/genetics , Binding Sites , Catalysis , Catalytic Domain , Hydrogen Bonding , Ligands , Molecular Structure , Protein Binding , Protein Conformation , Protons
SELECTION OF CITATIONS
SEARCH DETAIL
...