Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Periodontol ; 38(9): 872-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21770995

ABSTRACT

OBJECTIVES: The aim of this prospective, parallel group designed, randomized controlled clinical study was to evaluate the effectiveness of an air-abrasive device (AAD) for non-surgical treatment of peri-implantitis. MATERIAL AND METHODS: Thirty patients, each of whom displayed at least one implant with initial to moderate peri-implantitis, were enrolled in an oral hygiene program (OHI) and randomly instrumented using either (1) AAD (amino acid glycine powder) or (2) mechanical debridement using carbon curets and antiseptic therapy with chlorhexidine digluconate (MDA). Clinical parameters were measured at baseline, 3 and 6 months after treatment [e.g. bleeding on probing (BOP), probing depth (PD), clinical attachment level (CAL)]. RESULTS: At 6 months, AAD group revealed significantly higher (p<0.05; unpaired t-test) changes in mean BOP scores when compared with MDA-treated sites (43.5 ± 27.7%versus 11.0 ± 15.7%). Both groups exhibited comparable PD reductions (AAD: 0.6 ± 0.6 mm versus MDA: 0.5 ± 0.6 mm) and CAL gains (AAD: 0.4 ± 0.7 mm versus MDA: 0.5 ± 0.8 mm) (p>0.05; unpaired t-test, respectively). CONCLUSIONS: Within its limitations, the present study has indicated that (i) both treatment procedures resulted in comparable but limited CAL gains at 6 months, and (ii) OHI+AAD was associated with significantly higher BOP reductions than OHI+MDA.


Subject(s)
Air Abrasion, Dental/instrumentation , Anti-Infective Agents, Local/administration & dosage , Chlorhexidine/administration & dosage , Peri-Implantitis/drug therapy , Peri-Implantitis/therapy , Periodontal Debridement/instrumentation , Periodontal Debridement/methods , Administration, Topical , Adult , Aged , Aged, 80 and over , Dental Implants/microbiology , Female , Glycine , Humans , Male , Middle Aged , Periodontal Index , Prospective Studies , Single-Blind Method , Statistics, Nonparametric , Young Adult
2.
PLoS One ; 3(10): e3508, 2008.
Article in English | MEDLINE | ID: mdl-18946510

ABSTRACT

BACKGROUND: Glyoxalases (Glo1 and Glo2) are involved in the glycolytic pathway by detoxifying the reactive methylglyoxal (MGO) into D-lactate in a two-step reaction using glutathione (GSH) as cofactor. Inhibitors of glyoxalases are considered as anti-inflammatory and anti-carcinogenic agents. The recent finding that various polyphenols modulate Glo1 activity has prompted us to assess curcumin's potency as an Glo1 inhibitor. METHODOLOGY/PRINCIPAL FINDINGS: Cultures of whole blood cells and tumor cell lines (PC-3, JIM-1, MDA-MD 231 and 1321N1) were set up to investigate the effect of selected polyphenols, including curcumin, on the LPS-induced cytokine production (cytometric bead-based array), cell proliferation (WST-1 assay), cytosolic Glo1 and Glo2 enzymatic activity, apoptosis/necrosis (annexin V-FITC/propidium iodide staining; flow cytometric analysis) as well as GSH and ATP content. Results of enzyme kinetics revealed that curcumin, compared to the polyphenols quercetin, myricetin, kaempferol, luteolin and rutin, elicited a stronger competitive inhibitory effect on Glo1 (K(i) = 5.1+/-1.4 microM). Applying a whole blood assay, IC(50) values of pro-inflammatory cytokine release (TNF-alpha, IL-6, IL-8, IL-1beta) were found to be positively correlated with the K(i)-values of the aforementioned polyphenols. Moreover, whereas curcumin was found to hamper the growth of breast cancer (JIMT-1, MDA-MB-231), prostate cancer PC-3 and brain astrocytoma 1321N1 cells, no effect on growth or vitality of human primary hepatocytes was elucidated. Curcumin decreased D-lactate release by tumor cells, another clue for inhibition of intracellular Glo1. CONCLUSIONS/SIGNIFICANCE: The results described herein provide new insights into curcumin's biological activities as they indicate that inhibition of Glo1 by curcumin may result in non-tolerable levels of MGO and GSH, which, in turn, modulate various metabolic cellular pathways including depletion of cellular ATP and GSH content. This may account for curcumin's potency as an anti-inflammatory and anti-tumor agent. The findings support the use of curcumin as a potential therapeutic agent.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Curcumin/pharmacology , Lactoylglutathione Lyase/antagonists & inhibitors , Blood Cells/drug effects , Blood Cells/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Drug Evaluation, Preclinical , Enzyme Inhibitors/pharmacology , Flavonoids/pharmacology , Humans , Interleukin-1beta/metabolism , L-Lactate Dehydrogenase/metabolism , Lipopolysaccharides/pharmacology , Models, Biological , Neoplasms/pathology , Phenols/pharmacology , Polyphenols , Substrate Specificity
3.
Biochem Pharmacol ; 76(5): 631-44, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18625205

ABSTRACT

Esters of alpha-oxo-carbonic acids such as ethyl pyruvate (EP) have been demonstrated to exert inhibitory effects on the production of anti-inflammatory cytokines. So far, there is no information about effects, if any, of ethyl lactate (EL), an obviously inactive analogue of EP, on inflammatory immune responses. In the present study, we provide evidence that the anti-inflammatory action of alpha-oxo-carbonic acid esters is mediated by inhibition of glyoxalases (Glo), cytosolic enzymes that catalyse the conversion of alpha-oxo-aldehydes such as methylglyoxal (MGO) into the corresponding alpha-hydroxy acids using glutathione as a cofactor. In vitro enzyme activity measurements revealed the inhibition of human Glo1 by alpha-oxo-carbonic acid esters, whilst alpha-hydroxy-carbonic acid esters such as EL were not inhibitory. In contrast, both EP and EL were shown to suppress the Lipopolysaccharide (LPS)-induced production of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6 and IL-8 from human immunocompetent cells, and modulated the expression of the immune receptors HLA-DR, CD14 and CD91 on human monocytes. Here, we show a crossing link between glyoxalases and the immune system. The results described herein introduce glyoxalases as a possible target for therapeutic approaches of immune suppression.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cytokines/antagonists & inhibitors , Lactates/pharmacology , Lactoylglutathione Lyase/antagonists & inhibitors , Pyruvates/pharmacology , Receptors, Immunologic/metabolism , Animals , Cytokines/biosynthesis , Down-Regulation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Macrophages/drug effects , Macrophages/enzymology , Mice , Monocytes/drug effects , Monocytes/enzymology , Pyruvaldehyde/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...