Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38968016

ABSTRACT

Intermittent pneumatic compression (IPC) systems apply external pressure to the lower limbs and enhance peripheral blood flow. We previously introduced a cardiac-gated compression system that enhanced arterial blood velocity (BV) in the lower limb compared to fixed compression timing (CT) for seated and standing sub7 jects. However, these pilot studies found that the CT that maximized BV was not constant across individuals and could change over time. Current CT modelling methods for IPC are limited to predictions for a single day and one heartbeat ahead. However, IPC therapy for may span weeks or longer, the BV response to compression can vary with physiological state, and the best CT for eliciting the desired physiological outcome may change, even for the same individual. We propose that a deep reinforcement learning (DRL) algorithm can learn and adaptively modify CT to achieve a selected outcome using IPC. Herein, we target maximizing lower limb arterial BV as the desired out19 come and build participant-specific simulated lower limb environments for 6 participants. We show that DRL can adaptively learn the CT for IPC that maximized arterial BV. Compared to previous work, the DRL agent achieves 98% ± 2 of the resultant blood flow and is faster at maximizing BV; the DRL agent can learn an "optimal" policy in 15 minutes ± 2 on average and can adapt on the fly. Given a desired objective, we posit that the proposed DRL agent can be implemented in IPC systems to rapidly learn the (potentially time-varying) "optimal" CT with a human-in-the-loop.

2.
Sci Rep ; 10(1): 2108, 2020 02 07.
Article in English | MEDLINE | ID: mdl-32034179

ABSTRACT

Memristors represent the fourth electrical circuit element complementing resistors, capacitors and inductors. Hallmarks of memristive behavior include pinched and frequency-dependent I-V hysteresis loops and most importantly a functional dependence of the magnetic flux passing through an ideal memristor on its electrical charge. Microtubules (MTs), cylindrical protein polymers composed of tubulin dimers are key components of the cytoskeleton. They have been shown to increase solution's ionic conductance and re-orient in the presence of electric fields. It has been hypothesized that MTs also possess intrinsic capacitive and inductive properties, leading to transistor-like behavior. Here, we show a theoretical basis and experimental support for the assertion that MTs under specific circumstances behave consistently with the definition of a memristor. Their biophysical properties lead to pinched hysteretic current-voltage dependence as well a classic dependence of magnetic flux on electric charge. Based on the information about the structure of MTs we provide an estimate of their memristance. We discuss its significance for biology, especially neuroscience, and potential for nanotechnology applications.


Subject(s)
Electric Conductivity , Microtubules/metabolism , Biophysical Phenomena , Electric Impedance , Microtubules/chemistry , Nanotechnology , Neural Networks, Computer , Tubulin/chemistry , Tubulin/metabolism
3.
Sci Rep ; 7(1): 9594, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851923

ABSTRACT

Microtubules (MTs), which are cylindrical protein filaments that play crucial roles in eukaryotic cell functions, have been implicated in electrical signalling as biological nanowires. We report on the small-signal AC ("alternating current") conductance of electrolytic solutions containing MTs and tubulin dimers, using a microelectrode system. We find that MTs (212 nM tubulin) in a 20-fold diluted BRB80 electrolyte increase solution conductance by 23% at 100 kHz, and this effect is directly proportional to the concentration of MTs in solution. The frequency response of MT-containing electrolytes exhibits a concentration-independent peak in the conductance spectrum at 111 kHz (503 kHz FWHM that decreases linearly with MT concentration), which appears to be an intrinsic property of MT ensembles in aqueous environments. Conversely, tubulin dimers (42 nM) decrease solution conductance by 5% at 100 kHz under similar conditions. We attribute these effects primarily to changes in the mobility of ionic species due to counter-ion condensation effects, and changes in the solvent structure and solvation dynamics. These results provide insight into MTs' ability to modulate the conductance of aqueous electrolytes, which in turn, has significant implications for biological information processing, especially in neurons, and for intracellular electrical communication in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...