Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 43(9): 1307-1317, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32957838

ABSTRACT

Recycling phosphorus from waste activated sludge has attracted a lot of interest to tackle the problem of phosphorus stocks depletion and the increase in food demand. In this study, the use of fermentation processes was investigated to enhance phosphorus dissolution from waste activated sludge to improve its recycling. Two fermentation processes, bioacidification and dark fermentation, were used on two different sludges fermented with wheat starch syrup in continuous operating conditions. Hydrogen yield from the co-substrate fermentation with waste activated sludge reached 3.9 mmolH2.gCODcosubstrate-1 yield during dark fermentation process and was negligible during bioacidification. Dissolved phosphorus in the waste activated sludge increased by 68% during bioacidification and by 43% during dark fermentation. In both processes, phosphorus dissolution was accompanied by iron, calcium and magnesium dissolution. Results show that fermentation enhances phosphorus dissolution in waste activated sludge to improve its recovery along with hydrogen and organic acids.


Subject(s)
Phosphorus , Sewage , Fatty Acids, Volatile , Fermentation , Recycling , Solubility
2.
Food Res Int ; 116: 175-183, 2019 02.
Article in English | MEDLINE | ID: mdl-30716934

ABSTRACT

When dairy powders are produced, the mineral fraction undergoes strong modifications during the vacuum concentration step, leading to the fouling of falling film evaporators. The objective of this study was to determine the nature of the deposits formed during the vacuum concentration of two fouling and highly mineralized products: hydrochloric acid whey and lactic acid whey. These products mainly differ in terms of their mineral composition: lactic acid whey contains a high level of lactic acid and traces of citrate, whereas hydrochloric acid whey contains citrate and no lactic acid. Concentrates at different concentration factors were produced using a pilot-scale falling film evaporator. The compositions of the fouling deposits as well as the precipitates present in the concentrates were deduced from the analytical determination of the composition of the concentrates and their respective diffusible phases. The behavior of the mineral fraction of both acid wheys during concentration was shown to be very different. In the case of hydrochloric acid whey, experimental results suggested a deposition of calcium and citrate ions in the evaporator as well as their precipitation in the highly concentrated products. On the contrary, neither mineral deposition nor precipitation occurred during the concentration of lactic acid whey. This study underlined the key role of citrate ions in the fouling of evaporators during the concentration of hydrochloric acid wheys.


Subject(s)
Calcium Citrate/chemistry , Drive , Hydrochloric Acid/chemistry , Whey/chemistry , Hydrogen-Ion Concentration , Lactic Acid , Minerals , Nitrogen/analysis , Vacuum
SELECTION OF CITATIONS
SEARCH DETAIL
...