Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Circulation ; 141(9): 751-767, 2020 03 03.
Article in English | MEDLINE | ID: mdl-31948273

ABSTRACT

BACKGROUND: Myocardial fibrosis is a hallmark of cardiac remodeling and functionally involved in heart failure development, a leading cause of deaths worldwide. Clinically, no therapeutic strategy is available that specifically attenuates maladaptive responses of cardiac fibroblasts, the effector cells of fibrosis in the heart. Therefore, our aim was to develop novel antifibrotic therapeutics based on naturally derived substance library screens for the treatment of cardiac fibrosis. METHODS: Antifibrotic drug candidates were identified by functional screening of 480 chemically diverse natural compounds in primary human cardiac fibroblasts, subsequent validation, and mechanistic in vitro and in vivo studies. Hits were analyzed for dose-dependent inhibition of proliferation of human cardiac fibroblasts, modulation of apoptosis, and extracellular matrix expression. In vitro findings were confirmed in vivo with an angiotensin II-mediated murine model of cardiac fibrosis in both preventive and therapeutic settings, as well as in the Dahl salt-sensitive rat model. To investigate the mechanism underlying the antifibrotic potential of the lead compounds, treatment-dependent changes in the noncoding RNAome in primary human cardiac fibroblasts were analyzed by RNA deep sequencing. RESULTS: High-throughput natural compound library screening identified 15 substances with antiproliferative effects in human cardiac fibroblasts. Using multiple in vitro fibrosis assays and stringent selection algorithms, we identified the steroid bufalin (from Chinese toad venom) and the alkaloid lycorine (from Amaryllidaceae species) to be effective antifibrotic molecules both in vitro and in vivo, leading to improvement in diastolic function in 2 hypertension-dependent rodent models of cardiac fibrosis. Administration at effective doses did not change plasma damage markers or the morphology of kidney and liver, providing the first toxicological safety data. Using next-generation sequencing, we identified the conserved microRNA 671-5p and downstream the antifibrotic selenoprotein P1 as common effectors of the antifibrotic compounds. CONCLUSIONS: We identified the molecules bufalin and lycorine as drug candidates for therapeutic applications in cardiac fibrosis and diastolic dysfunction.


Subject(s)
Amaryllidaceae Alkaloids/pharmacology , Bufanolides/pharmacology , Cardiomyopathies/prevention & control , Cardiovascular Agents/pharmacology , Fibroblasts/drug effects , Phenanthridines/pharmacology , Animals , Apoptosis/drug effects , Cardiomyopathies/etiology , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Cell Proliferation/drug effects , Cells, Cultured , Diastole , Disease Models, Animal , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , High-Throughput Screening Assays , Humans , Hypertension/complications , Hypertension/physiopathology , Male , Mice, Inbred C57BL , MicroRNAs/genetics , MicroRNAs/metabolism , Myocardium/metabolism , Myocardium/pathology , Rats, Inbred Dahl , Selenoprotein P/genetics , Selenoprotein P/metabolism , Ventricular Function, Left/drug effects
2.
Sci Rep ; 9(1): 15277, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649303

ABSTRACT

Fabry disease is an X-linked deficiency of the lysosomal hydrolase alpha-galactosidase A (alpha-Gal). This results in an accumulation of globotriaosylceramide (GL-3/Gb3) in a variety of cells with subsequent functional impairment. The continuous progress of FD often leads to decreased quality of life and premature death caused by multi-organic complications. The overall aim of our study was to determine the amount of circulating miRNAs in Fabry patients and to test whether ERT would alter the level of individual circulating miRNAs. We used miRNA sequencing by the HTG EdgeSeq System to identify the circulating miRNA pool from Fabry patients with and without enzyme replacement therapy (n = 6). In total, 296 miRNAs in serum of patients were identified. Among them 9 miRNAs were further evaluated in extra serum samples (n = 31) using real-time qPCR and 6 of them showed significant differential expression. The resulting miRNA pattern may help to better understand mechanisms involved in the beneficial effects of ERT and these new miRNA markers could help to estimate the efficacy of ERT or to identify Fabry patients with specific need for ERT.


Subject(s)
Circulating MicroRNA/blood , Enzyme Replacement Therapy/methods , Fabry Disease/blood , alpha-Galactosidase/therapeutic use , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
3.
Mol Ther ; 27(8): 1350-1363, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31324392

ABSTRACT

Circular RNAs (circRNAs) are a subclass of non-coding RNAs that lack free 3' and 5' ends and, thus, exist as continuous loop RNAs. Such circular transcripts have been identified for thousands of genes, are regulated in developmental stages and pathophysiological conditions, and are often expressed in a tissue- or cell-type-specific manner. For a long time, circular transcripts were considered as aberrant splicing by-products. However, high-throughput transcriptome sequencing and focused molecular characterization of individual circRNAs uncovered their ubiquity. Evidence emerges suggesting circRNAs are functional molecules. In this review, we illustrate the current knowledge of circRNA formation and circRNA detection methods. We summarize different molecular mechanisms of action and highlight circRNAs with specific roles in cardiovascular disease. Finally, we describe a number of tools for circRNA manipulation, which may be exploited for circRNA-based therapeutic interventions in the future.


Subject(s)
RNA, Circular , RNA, Untranslated , Animals , Biomarkers , Gene Editing , Gene Expression Regulation , Genetic Therapy/methods , Humans , Molecular Diagnostic Techniques , Molecular Targeted Therapy , Organ Specificity/genetics , RNA Splicing
4.
Hypertension ; 73(4): 820-828, 2019 04.
Article in English | MEDLINE | ID: mdl-30686085

ABSTRACT

The plasma levels of long noncoding RNA LIPCAR are elevated in heart failure (HF) patients with reduced ejection fraction and associated with left ventricular remodeling and poor outcomes. We studied whether the presence of chronic kidney disease (CKD), as defined by an estimated glomerular filtration rate value <60mL/(min·1.73m2) modified the associations of plasma LIPCAR with left ventricular remodeling and outcomes in HF patients. Two hundred and thirty-four patients (mean age 74 [9.14] years, 50% male) were enrolled and followed for 4.73 (0.24-7.25) years. Plasma LIPCAR was detected by real-time quantitative polymerase chain reaction. LIPCAR was increased ( P=0.005) in patients compared with 17 age- and sex-matched controls, directly correlated with age ( P=0.001) and with the maximal early transmitral flow velocity to the mean peak early diastolic velocity of the mitral annulus displacement ratio ( P=0.001) and inversely correlated with estimated glomerular filtration rate ( P<0.001). LIPCAR was associated with hospitalization for HF, cardiovascular death, and a composite of hospitalization for HF or cardiovascular death ( P≤0.010), these associations being dependent of estimated glomerular filtration rate. The interactions between estimated glomerular filtration rate and LIPCAR with respect to these outcomes were statistically significant or of borderline significance ( P≤0.060). LIPCAR was increased in CKD patients compared with non-CKD patients ( P=0.021). LIPCAR was independently associated with hospitalization for HF ( P≤0.039) only in non-CKD patients, but its addition to traditional risk factors did not improve risk prediction in these patients. In conclusion, plasma LIPCAR prognosticates outcomes in elderly HF patients without CKD. Thus, there is an effect modification of CKD on the association of circulating LIPCAR with outcomes in HF patients.


Subject(s)
Heart Failure/blood , Heart Ventricles/physiopathology , RNA, Long Noncoding/blood , Stroke Volume/physiology , Ventricular Remodeling/physiology , Aged , Biomarkers/blood , Echocardiography , Female , Heart Failure/epidemiology , Heart Failure/physiopathology , Heart Ventricles/diagnostic imaging , Humans , Incidence , Male , Prevalence , Renal Insufficiency, Chronic , Spain/epidemiology
5.
Exp Hematol ; 43(10): 880-90, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26072332

ABSTRACT

In Philadelphia-positive chronic myeloid leukemia (CML), imatinib resistance frequently emerges because of point mutations in the ABL1 kinase domain, but may also be the consequence of uncontrolled upstream signaling. Recently, the heteromeric transcription factor GA-binding protein (GABP) was found to promote CML-like myeloproliferative disease in mice. In a cohort of 70 CML patients, we found that expression of the GABP α subunit (GABPα) is positively correlated to the BCR-ABL1/ABL1 ratio. Moreover, significantly higher GABPα expression was detected in blast crisis than in chronic phase CML after performing data mining on 91 CML patients. In functional studies, imatinib sensitivity is enhanced after GABPα knockdown in tyrosine kinase inhibitors (TKI)-sensitive K-562, as well as by overexpression of a deletion mutant in TKI-resistant NALM-1 cells. Moreover, in K-562 cells, GABP-dependent expression variations of PRKD2 and RAC2, relevant signaling mediators in CML, were observed. Notably, protein kinase D2 (Prkd2) was reported to be a GABP target gene in mice. In line with this, we detected a positive correlation between GABPA and PRKD2 expression in primary human CML, indicating that the effects of GABP are mediated by PRKD2. These findings illustrate an important role for GABP in disease development and imatinib sensitivity in human CML.


Subject(s)
Drug Resistance, Neoplasm , Fusion Proteins, bcr-abl/metabolism , GA-Binding Protein Transcription Factor/metabolism , Gene Expression Regulation, Leukemic , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Proto-Oncogene Proteins c-ets/biosynthesis , Female , Fusion Proteins, bcr-abl/genetics , GA-Binding Protein Transcription Factor/genetics , Gene Knockdown Techniques , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Male , Middle Aged , Proto-Oncogene Proteins c-ets/genetics , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , RAC2 GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...