Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biochem ; 112(12): 3762-72, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21826703

ABSTRACT

Potential benefits of co-culturing monocytes (MC) with vascular smooth muscle cells have been reported on for tissue engineering applications with a degradable, polar, hydrophobic, and ionic polyurethane (D-PHI). Since the interaction of MC and endothelial cells (EC) within the blood vessel endothelium is also a process of wound repair it was of interest to investigate their function when cultured on the synthetic D-PHI materials, prior to considering the materials' use in vascular engineering. The co-culture (MC/EC) in vitro studies were carried out on films in 96 well plates and porous scaffold disks were prepared for implant studies in an in vivo subcutaneous mouse model. After 7 days in culture, the MC/EC condition was equal to EC growth but had lower esterase activity (a measure of degradative potential), no pro-inflammatory TNF-α and a relatively high anti-inflammatory IL-10 release while the ECs maintained their functional marker CD31. After explantation of the porous scaffolds, a live/dead stain showed that the cells infiltrating the scaffolds were viable and histological stains (May-Grunwald, Trichrome) demonstrated tissue in growth and extracellular matrix synthesis. Lysates from the implant scaffolds analyzed with a cytokine antibody array showed decreased pro-inflammatory cytokines (IL-6, TNF-α, GM-CSF), increased anti-inflammatory cytokines (IL-10, IL-13, TNF-RI), and increased chemotactic cytokines (MCP-1, MCP-5, RANTES). The low foreign body response elicited by D-PHI when implanted in vivo supported the in vitro studies (EC and MC co-culture), demonstrating that D-PHI promoted EC growth along with an anti-inflammatory MC, further demonstrating its potential as a tissue engineering scaffold for vascular applications.


Subject(s)
Biocompatible Materials , Blood Vessel Prosthesis , Endothelium, Vascular/cytology , Models, Animal , Monocytes/cytology , Polyurethanes/metabolism , Animals , Blotting, Western , Coculture Techniques , Cytokines/metabolism , Endothelium, Vascular/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Mice , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Monocytes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...