Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 5853, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32246087

ABSTRACT

The importance of the gut microbiota in human health has led to an increased interest to study probiotic bacteria. Fermented food is a source of already established probiotics, but it also offers an opportunity to discover new taxa. Four strains of Weissella sp. isolated from Indian fermented food have been genome sequenced and classified into the species W. cibaria based on whole-genome phylogeny. The genome of W. cibaria strain 92, known to utilise xylooligosaccharides and produce lactate and acetate, was analysed to identify genes for oligosaccharide utilisation. Clusters including genes involved in transportation, hydrolysis and metabolism of xylooligosaccharides, arabinooligosaccharides and ß-glucosides were identified. Growth on arabinobiose and laminaribiose was detected. A 6-phospho-ß-glucosidase clustered with a phosphotransferase system was found upregulated during growth on laminaribiose, indicating a mechanism for laminaribiose utilisation. The genome of W. cibaria strain 92 harbours genes for utilising the phosphoketolase pathway for the production of both acetate and lactate from pentose and hexose sugars but lacks two genes necessary for utilising the pentose phosphate pathway. The ability of W. cibaria strain 92 to utilise several types of oligosaccharides derived from dietary fibres, and produce lactate and acetate makes it interesting as a probiotic candidate for further evaluation.


Subject(s)
Dietary Fiber/metabolism , Oligosaccharides/metabolism , Weissella/genetics , Arabinose/metabolism , Genome, Bacterial/genetics , Metabolic Networks and Pathways/genetics , Peptidoglycan/metabolism , Phylogeny , Weissella/classification , Weissella/metabolism , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...