Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960549

ABSTRACT

Electrochemical sensors, due to their excellent and unique features, are of high interest nowadays for the detection and monitoring of several biological compounds. In such a case, serotonin (SRN), an important neurotransmitter, was herein studied for its detection in biological fluids since its presence is more crucial to be monitored and detected in clinical and medical applications. Several study strategies have been used to determine the chemical and physical properties. The crystalline size of the constructed copper sulfide (Cu2S) material was measured to be 25.92 nm. The Cu2S was fabricated over the working surface and further analyzed for several sensor parameters to be optimized. The charge transfer resistance of the copper sulfide-modified glassy carbon electrode (Cu2S/GCE) was determined to be about 277.0 Ω. With the linear range from about 0.029 µM to 607.6 µM for SRN, the limit of detection (LOD) was calculated as 3.2 nM, with a good sensitivity of 13.23 µA µM-1 cm2. The sensor experienced excellent repeatability, reproducibility, and long-term stability. The fabricated electrode was selective with the presence of different interfering compounds. The real sample analysis, as determined with the regular addition method with human serum and urine samples, revealed a good recovery percentage. Thus, the employed fabricated electrode material will be highly effective in sensing other analytes of choice.


Subject(s)
Copper , Electrochemical Techniques , Humans , Copper/chemistry , Reproducibility of Results , Electrochemical Techniques/methods , Carbon/chemistry , Sulfides , Electrodes , Serotonin
2.
Chemosphere ; 320: 138068, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36754308

ABSTRACT

The exploration of graphitic carbon nitride (g-C3N4), a two-dimensional (2D) metal-free polymer semiconducting material, is largely discussed due to its large specific surface area, high electrical conductivity, thermal stability, and adaptable electronic structure. The adaption of sulfur (S) and phosphorous (P) atoms into the layers of g-C3N4 increases the electrochemical performance of detecting nilutamide (NT). The aggregation severity can be decreased by integrating S/P into g-C3N4, thereby improving surface area and electrical conductance. The g-C3N4, S/gC3N4, P/g-C3N4, and S/P/g-C3N4 were studied with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier transform infrared (FTIR), Ultraviolet visible spectroscopy (UV), Thermogravimetric analysis (TGA), and Brunauer-Emmett-Teller (BET). The well-assigned S/P/g-C3N4 exhibited a good crystalline structure with more active sites for improved electron transfer toward NT detection. Both differential pulse voltammetry (DPV) and amperometry (IT) was studied for NT detection. The electrochemical studies were done with a linear range of 0.019-1.17 µM to 5.36-1891.98 µM in DPV and 0.01 µM-158.3 µM in IT technique. The attained limit of detection in DPV analysis was 3.2 nM and with IT analysis 2.4 nM. The nanocomposite S/P/g-C3N4 shows good selectivity towards NT. The fabricated electrode showed excellent repeatability, reproducibility, and stability, with a significant recovery range in real sample analysis.


Subject(s)
Graphite , Nitriles , Reproducibility of Results , Nitriles/chemistry , Graphite/chemistry
3.
Chemosphere ; 307(Pt 1): 135373, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35787878

ABSTRACT

The ill effects of prolonged use of rifamycin antibiotics such as rifampicin accentuates its need for detection in the environment as well as in biological fluids. Antibiotics in water and soil are long-lasting, bio-accumulative, and hazardous to aquatic species as well as human health. To address this issue, a sensing platform has been developed using Molybdenum diselenide (MoSe2) embedded on reduced graphene oxide (rGO) functionalized with ß-cyclodextrin (ß-cd) polymer. The formation of hybrid composite was validated with X-ray diffraction analysis (XRD), Raman spectroscopy, fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM) with EDX analysis. The formation of microspheres were observed with hexagonal crystal system and P63/mmc space group. Furthermore, the composite was employed to fabricate an efficient electrochemical sensor for detecting the widely used antibiotic, rifampicin (RIF). The results reveal excellent activity of the sensor with a limit of detection (LOD) of 28 nM in a linear working range from 0.019 to 374.5 µM. The sensor also exhibited a high sensitivity of 11.64 µA µM-1 cm-2. Additionally, the sensor showed appreciable recovery range when monitored in real-samples such as human serum and urine, and industrial water, and fish samples.


Subject(s)
Graphite , beta-Cyclodextrins , Animals , Anti-Bacterial Agents , Electrochemical Techniques/methods , Graphite/chemistry , Humans , Microspheres , Molybdenum/chemistry , Rifampin , Soil , Spectroscopy, Fourier Transform Infrared , Water
4.
Chemosphere ; 307(Pt 2): 135715, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35843434

ABSTRACT

The modern development in the agricultural production has huge influential factors being highly beneficial and also includes some health hazards. Under the class of chlorophenols, 2,4,6-trichlorophenol is a widely used chemical which remains as a major pollutant in the environment. The detection of 2,4,6-trichlorophenol was initiated as a controlling measure to decrease the seriousness prevailing in the ecosystem. The electrochemical and UV-vis absorption sensing platform are simple and low-cost detection techniques with precise and sensitive analysis. Cadmium tin oxide integrated with the reduced graphene oxide was employed as a nanohybrid for the construction of the working electrode. The structural and morphological analysis confirmed the high degree of crystallinity of the nanocomposite with nanorod formation. The high surface area, with high charge carrier mobility, and increased electrical conductivity of the material boosted the 2,4,6-trichlorophenol detection. The active surface area was calculated to be 0.068 cm-1, 0.089 cm-1, 0.118 cm-1 and 0.146 cm-1 for all the modified electrodes. The resistance of the electrodes was about 91.4 Ω, 72.9 Ω, 48.8 Ω and 41.6 Ω. The linear range of 2,4,6-trichlorophenol was 0.019 µM-0.299 µM and 1.299 µM-1678.97 µM in electrochemical sensing and 10.99 µM-24.84 µM in UV detection. The obtained limit of detection with the formulation 3σ/SD was about 3.05 nM and 80 nM with sensitivity about 14.01 µA µM-1 cm-2. The real sample detection in environmental real samples showed good recovery results. The specific selectivity, good repeatability, reproducibility and stability analysis proves the good sensing parameters. Thus, the fabricated electrode is highly sufficient of sensing 2,4,6-trichlorophenol. These excellent features of the material can be applied for several other applications which will provide good performances.


Subject(s)
Chlorophenols , Environmental Pollutants , Graphite , Nanotubes , Cadmium , Cadmium Compounds , Ecosystem , Electrochemical Techniques/methods , Electrodes , Graphite/chemistry , Nanotubes/chemistry , Oxides , Phenols , Reproducibility of Results
5.
Chemosphere ; 282: 130874, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34087558

ABSTRACT

Transition metal chalcogenides (TMCs) have great potential in diverse electrochemical technologies owing to their unique characteristics. In the present work, we portray the design and synthesis of Vanadium selenide (V2Se9)/reduced graphene oxide (rGO) forming a two-dimensional (2D) hybrid nanocomposite via a simple hydrothermal method. The successfully synthesized nanocomposite underwent in-depth surface and morphological characterizations by XRD, Raman spectroscopy, XPS, TEM, STEM and its potential as an electro catalyst was investigated by using glassy carbon electrode (GCE) for the detection of 2,4,6-trichlorophenol (TCP). The structural features favored a high charge transfer ratio, high surface area as well as excellent conductivity and catalytic activity. The V2Se9/rGO/GCE modified electrode showed a low charge transfer resistance (Rct) of 54.057 Ω cm2, a decent detection limit (LOD) of 35.07 nM and a very high sensitivity of 22 µA µM-1 cm-2 in a working range of 0.001 µM-1150 µM. This is due to the active proton interaction, surface enhancement, and positive synergistic effect between rGO and V2Se9. The proposed sensor has good detection potential in agricultural soil, river water, fish, and beverage samples like wine and apple juice. The obtained results from our investigation would elucidate the application of the catalyst in electrochemical sensors.


Subject(s)
Graphite , Nanocomposites , Animals , Electrodes , Vanadium
SELECTION OF CITATIONS
SEARCH DETAIL
...