Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 11(21)2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36360096

ABSTRACT

Machine learning techniques play a significant role in agricultural applications for computerized grading and quality evaluation of fruits. In the agricultural domain, automation improves the quality, productivity, and economic growth of a country. The quality grading of fruits is an essential measure in the export market, especially defect detection of a fruit's surface. This is especially pertinent for mangoes, which are highly popular in India. However, the manual grading of mango is a time-consuming, inconsistent, and subjective process. Therefore, a computer-assisted grading system has been developed for defect detection in mangoes. Recently, machine learning techniques, such as the deep learning method, have been used to achieve efficient classification results in digital image classification. Specifically, the convolution neural network (CNN) is a deep learning technique that is employed for automated defect detection in mangoes. This study proposes a computer-vision system, which employs CNN, for the classification of quality mangoes. After training and testing the system using a publicly available mango database, the experimental results show that the proposed method acquired an accuracy of 98%.

2.
Comput Methods Programs Biomed ; 224: 107027, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35914385

ABSTRACT

BACKGROUND AND OBJECTIVES: The prediction of multiple drug efficacies using machine learning prediction techniques based on clinical and molecular attributes of tumors is a new approach in the field of precision medicine of oncology. The selection of suitable and effective therapeutic drugs among the potential drugs is performed computationally considering the tumor features. In this study, we developed and validated machine learning models to predict the efficacy of five anti-cancer drugs according to the clinical and molecular attributes of 30 oral squamous cell carcinoma (OSCC) cohorts. This sounds a bit odd - consider: Ranking of the drugs was achieved using their apoptotic priming. METHODS: We developed multiple drug efficacy prediction models based on three types of tumor characteristics by applying machine learning methods, including multi-target regression (MTR) and support vector regression (SVR). The prediction accuracy of existing machine learning methods was enhanced by introducing novel pre-processing techniques to develop Enhanced MTR (E_MTR), Enhanced Log-based MTR (EL_MTR), Enhanced Multi-target SVR (EM_SVR), and Enhanced Log-based Multi-target SVR (ELM_SVR). As a unique capability, ELM_SVR and EL_MTR rank the drugs based on their predicted efficacy. All the drug efficacy prediction models were built using OSCC real samples and theoretical samples. The best model was selected was based on dataset size and evaluation metrics, such as error terms, residuals and parameter tuning, and cross-validated (CV) using 30 real samples and 340 theoretical samples. RESULTS: When 30 real tumor samples were used for the train-test and CV methods, MTR models predicted the efficacy with less error than SVR models. Comparatively, using 340 theoretical samples for the train-test and CV methods, though MTR improved the performance, SVR predicted the efficacy with zero error. We found that, for small samples, the proposed MTR provided a 0.01 difference between actual apoptotic priming and predicted priming of five drugs. For large samples, the predicted values by the proposed SVR had a difference of 0.00001. The error terms (Actual vs. Predicted) also reveal that the enhanced log model is suitable when MTR is applied. Meanwhile, the enhanced model is suitable for SVR learning for multiple drug efficacy prediction. It was found that the predicted ranks of the drugs based on the multi-targeted efficacy prediction exactly match the actual rankings. CONCLUSION: We developed efficient statistical and machine learning models using MTR and SVR analysis for anticancer drug efficacy, which will be useful in the field of precision medicine to choose the most suitable drugs in personalized manner. The performance results of the proposed enhanced ranking techniques are described as follows: i) EL_MTR is the best to predict multiple anticancer drug efficacies and improve the accuracy of ranking drugs, irrespective of sample size; and ii) ELM_SVR performs better than other MTR models with a large sample size and precise ranking process.


Subject(s)
Antineoplastic Agents , Carcinoma, Squamous Cell , Mouth Neoplasms , Antineoplastic Agents/therapeutic use , Carcinoma, Squamous Cell/drug therapy , Humans , Mouth Neoplasms/drug therapy , Multivariate Analysis , Regression Analysis , Support Vector Machine
3.
Comput Methods Programs Biomed ; 178: 105-112, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31416538

ABSTRACT

BACKGROUND AND OBJECTIVES: The computational prediction of drug responses based on the analysis of multiple clinical features of the tumor will be a novel strategy for accomplishing the long-term goal of precision medicine in oncology. The cancer patients will be benefitted if we computationally account all the tumor characteristics (data) for the selection of most effective and precise therapeutic drug. In this study, we developed and validated few computational models to predict anticancer drug efficacy based on molecular, cellular and clinical features of 31 oral squamous cell carcinoma (OSCC) cohort using computational methods. METHODS: We developed drug efficacy prediction models using multiple tumor features by employing the statistical methods like multi linear regression (MLR), modified MLR-weighted least square (MLR-WLS) and enhanced MLR-WLS. All the three developed drug efficacy prediction models were then validated using the data of actual OSCC samples (train-test ratio 31: 31) and actual Vs hypothetical samples (train-test ratio 31: 30). The selected best statistical model i.e. enhanced MLR-WLS has then been cross-validated (CV) using 341 theoretical tumor data. Finally, the performances of the models were assessed by the level of learning confidence, significance, accuracy and error terms. RESULTS: The train-test process for the real tumor samples of MLR-WLS method revealed the drug efficacy prediction enhancement and we observed that there was very less priming difference between actual and predicted. Furthermore, we found there was a less difference between actual apoptotic priming and predicted apoptotic priming for the tumors 6, 8, 21 and 30 whereas, for the remaining tumors there were no differences between predicted and actual priming data. The error terms (Actual Vs Predicted) also revealed the reliability of enhanced MLR-WLS model for drug efficacy prediction. CONCLUSION: We developed effective computational prediction models using MLR analysis for anticancer drug efficacy which will be useful in the field of precision medicine to choose the choice of drug in a personalized manner. We observed that the enhanced MLR-WLS model was the best fit to predict anticancer drug efficacy which may have translational applications.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Computer Simulation , Mouth Neoplasms/drug therapy , Adult , Aged , Algorithms , Apoptosis , Female , Humans , Least-Squares Analysis , Linear Models , Male , Medical Oncology , Middle Aged , Multivariate Analysis , Precision Medicine , Reproducibility of Results
4.
J Nat Sci Biol Med ; 8(2): 159-166, 2017.
Article in English | MEDLINE | ID: mdl-28781480

ABSTRACT

BACKGROUND: Epilepsy causes when the repeated seizure occurs in the brain. Electroencephalogram (EEG) test provides valuable information about the brain functions and can be useful to detect brain disorder, especially for epilepsy. In this study, application for an automated seizure detection model has been introduced successfully. MATERIALS AND METHODS: The EEG signals are decomposed into sub-bands by discrete wavelet transform using db2 (daubechies) wavelet. The eight statistical features, the four gray level co-occurrence matrix and Renyi entropy estimation with four different degrees of order, are extracted from the raw EEG and its sub-bands. Genetic algorithm (GA) is used to select eight relevant features from the 16 dimension features. The model has been trained and tested using support vector machine (SVM) classifier successfully for EEG signals. The performance of the SVM classifier is evaluated for two different databases. RESULTS: The study has been experimented through two different analyses and achieved satisfactory performance for automated seizure detection using relevant features as the input to the SVM classifier. CONCLUSION: Relevant features using GA give better accuracy performance for seizure detection.

5.
Springerplus ; 5(1): 1670, 2016.
Article in English | MEDLINE | ID: mdl-27733972

ABSTRACT

The field of telemedicine has gained immense momentum, owing to the need for transmitting patients' information securely. This paper puts forth a unique method for embedding data in medical images. It is based on edge based embedding and XOR coding. The algorithm proposes a novel key generation technique by utilizing the design of a sudoku puzzle to enhance the security of the transmitted message. The edge blocks of the cover image alone, are utilized to embed the payloads. The least significant bit of the pixel values are changed by XOR coding depending on the data to be embedded and the key generated. Hence the distortion in the stego image is minimized and the information is retrieved accurately. Data is embedded in the RGB planes of the cover image, thus increasing its embedding capacity. Several measures including peak signal noise ratio (PSNR), mean square error (MSE), universal image quality index (UIQI) and correlation coefficient (R) are the image quality measures that have been used to analyze the quality of the stego image. It is evident from the results that the proposed technique outperforms the former methodologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...