Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 29(15): 155802, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28075327

ABSTRACT

Density functional calculations are performed to study the magnetic order of the severely distorted square planar cupric oxide (CuO) and local spin disorder in it in the presence of the transition metal impurities M (=Cr, Mn, Fe, Co and Ni). The distortion in the crystal structure, arisen to reduce the band energy by minimizing the covalent interaction, creates two crisscrossing zigzag spin-1/2 chains. From the spin dimer analysis we find that while the spin chain along [Formula: see text] has strong Heisenberg type antiferromagnetic coupling (J ~ 127 meV), along [Formula: see text] it exhibits weak, but robust, ferromagnetic coupling (J ~ 9 meV) mediated by reminiscent p-d covalent interactions. The impurity effect on the magnetic ordering is independent of M and purely orbital driven. If the given spin-state of M is such that the [Formula: see text] orbital is spin-polarized, then the original long-range ordering is maintained. However, if [Formula: see text] orbital is unoccupied, the absence of corresponding covalent interaction breaks the weak ferromagnetic coupling and a spin-flip takes place at the impurity site leading to breakdown of the long range magnetic ordering.

2.
J Nanosci Nanotechnol ; 15(7): 4855-62, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26373047

ABSTRACT

The fabrication of a novel amperometric biosensor based on selective determination of dopamine (DA) using nafion coated cerium oxide nanoparticles (NPs) decorated graphene nanosheets (CeO2-HEG-nafion) as a transducer candidate is reported. Graphene was synthesized by hydrogen exfoliation technique. Decoration of CeO2NPs over graphene nanosheets was done by chemical reduction method. The electrochemical impedance spectroscopy (EIS) study shows the enhanced electron transfer kinetics of the composite compared to HEG modified and bare glassy carbon electrode (GCE). The response of the composite towards dopamine displays a lower oxidation potential of 0.23 V and a high oxidation current. The sensor exhibits linearity from 10 µM to 780 µM with a detection limit of 1 µM. In the presence of nafion, it shows excellent selectivity for coexisting interference species like Ascorbic acid (AA) and Uric acid (UA). The excellent performance of the biosensor can be attributed to large active surface area, enhanced electron transfer kinetics and high catalytic activity of the composite.


Subject(s)
Cerium/chemistry , Dielectric Spectroscopy/methods , Dopamine/analysis , Graphite/chemistry , Nanoparticles/chemistry , Sensitivity and Specificity
3.
J Phys Condens Matter ; 21(19): 195409, 2009 May 13.
Article in English | MEDLINE | ID: mdl-21825487

ABSTRACT

The crystal structure, dc and ac magnetic susceptibility, electron spin resonance and magnetoresistive behavior of Nd(x)Bi(0.5-x)Sr(0.5)MnO(3) (x = 0.1, 0.2, 0.3 and 0.4) compounds are studied. The Rietveld analysis of the XRD data shows that the samples crystallize in an orthorhombic perovskite structure, with Pbnm space group for x = 0.1 and 0.2 and Imma space group for x = 0.4 and 0.3. Magnetic studies reveal that substituting Bi with Nd collapses the robust charge ordered AFM state of Bi(0.5)Sr(0.5)MnO(3) to an inhomogeneous magnetic state. As Nd concentration increases there is a gradual appearance of cluster glass behavior. ESR studies reveal that the NBSMO system phase separates into ferromagnetic and antiferromagnetic regions below the transition temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...