Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 14: 1380736, 2024.
Article in English | MEDLINE | ID: mdl-38716191

ABSTRACT

Introduction: Chikungunya virus (CHIKV) infection is associated with acute clinical manifestations and chronic joint inflammation. CHIKV has emerged as a significant causative agent of central nervous system (CNS) complications, including encephalitis and related sequelae. Microglial cells, crucial for immune responses and tissue repair in the CNS, play a vital role in the host response to viral infections, with their activation potentially leading to either protection or pathology. In this study, the infection biology of CHIKV in the C20 human microglial cell line was investigated. Methods: The permissiveness of C20 cells to CHIKV infection was assessed, and viral replication kinetics were compared to Vero E6 cells. Cytopathic effects of CHIKV infection on C20 cells were examined, along with ultrastructural changes using transmission electron microscopy. Additionally, apoptosis induction, mitochondrial membrane potential, and alterations in cell surface marker expression were evaluated by flow cytometry. Results: CHIKV infection demonstrated permissiveness in C20 cells, similar to Vero cells, resulting in robust viral replication and cytopathic effects. Ultrastructural analysis revealed viral replication, mature virion formation, and distinctive cytoplasmic and nuclear changes in infected C20 cells. CHIKV infection induced significant apoptosis in C20 cells, accompanied by mitochondrial membrane depolarization and altered expression of cell surface markers such as CD11c, CD14, and HLA-DR. Notably, decreased CD14 expression was observed in CHIKV-infected C20 cells. Discussion: The study findings suggest that CHIKV infection induces apoptosis in C20 microglial cells via the mitochondrial pathway, with significant alterations in cell surface marker expression, particularly CD14 that is linked with apoptosis induction. These observations provide valuable insights into the role of human microglial cells in the host response to CHIKV infection and contribute to the knowledge on the neuropathogenesis of this virus.


Subject(s)
Apoptosis , Chikungunya Fever , Chikungunya virus , Microglia , Mitochondria , Virus Replication , Microglia/virology , Chikungunya virus/physiology , Humans , Mitochondria/ultrastructure , Cell Line , Chlorocebus aethiops , Animals , Vero Cells , Chikungunya Fever/virology , Membrane Potential, Mitochondrial , Cytopathogenic Effect, Viral
2.
J Neuromuscul Dis ; 11(1): 221-232, 2024.
Article in English | MEDLINE | ID: mdl-38108359

ABSTRACT

Charcot-Marie-Tooth disease 4H(CMT4H) is an autosomal recessive demyelinating form of CMT caused by FGD4/FRABIN mutations. CMT4H is characterized by early onset and slowly progressing motor and sensory deficits in the distal extremities, along with foot deformities. We describe a patient with CMT4H who presented with rapidly progressing flaccid quadriparesis during the postpartum period, which improved significantly with steroid therapy. Magnetic resonance imaging and ultrasonography demonstrated considerable nerve thickening with increased cross-sectional area in the peripheral nerves. A nerve biopsy revealed significant demyelination and myelin outfolding. This is the first report of an Indian patient with a novel homozygous nonsense c.1672C>T (p.Arg558Ter) mutation in the FGD4 gene, expanding the mutational and phenotypic spectrum of this disease.


Subject(s)
Charcot-Marie-Tooth Disease , Female , Humans , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , Microfilament Proteins/genetics , Pedigree , Mutation , Phenotype , Guanine Nucleotide Exchange Factors/genetics
3.
J Neurochem ; 167(2): 218-247, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37694499

ABSTRACT

Traumatic brain injury (TBI) causes significant neurological deficits and long-term degenerative changes. Primary injury in TBI entails distinct neuroanatomical zones, i.e., contusion (Ct) and pericontusion (PC). Their dynamic expansion could contribute to unpredictable neurological deterioration in patients. Molecular characterization of these zones compared with away from contusion (AC) zone is invaluable for TBI management. Using proteomics-based approach, we were able to distinguish Ct, PC and AC zones in human TBI brains. Ct was associated with structural changes (blood-brain barrier (BBB) disruption, neuroinflammation, axonal injury, demyelination and ferroptosis), while PC was associated with initial events of secondary injury (glutamate excitotoxicity, glial activation, accumulation of cytoskeleton proteins, oxidative stress, endocytosis) and AC displayed mitochondrial dysfunction that could contribute to secondary injury events and trigger long-term degenerative changes. Phosphoproteome analysis in these zones revealed that certain differentially phosphorylated proteins synergistically contribute to the injury events along with the differentially expressed proteins. Non-synaptic mitochondria (ns-mito) was associated with relatively more differentially expressed proteins (DEPs) compared to synaptosomes (Syn), while the latter displayed increased protein oxidation including tryptophan (Trp) oxidation. Proteomic analysis of immunocaptured complex I (CI) from Syn revealed increased Trp oxidation in Ct > PC > AC (vs. control). Oxidized W272 in the ND1 subunit of CI, revealed local conformational changes in ND1 and the neighboring subunits, as indicated by molecular dynamics simulation (MDS). Taken together, neuroanatomical zones in TBI show distinct protein profile and protein oxidation representing different primary and secondary injury events with potential implications for TBI pathology and neurological status of the patients.

4.
Neurology ; 101(15): e1572-e1576, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37487748

ABSTRACT

Mucopolysaccharidosis IIID (MPS IIID/Sanfilippo syndrome D, OMIM # 252940) is an autosomal recessive lysosomal storage disorder (LSD) and the rarest form of the mucopolysaccharidosis (MPS) III subtypes. It is caused by sequence variations in the gene encoding lysosomal enzyme N-acetyl glucosamine-6-sulphatase (GNS). Deficiency of GNS impairs catabolism of glycosaminoglycans causing accumulation of heparan sulphate within lysosomes of various tissues, which is visualized as membranous cytoplasmic bodies (MCBs) on electron microscopy. The recognition of this ultrastructural feature in a muscle biopsy instigated genetic evaluation for LSD in our case resulting in the detection of a novel pathogenic GNS gene variant. The patient also exhibited intellectual disability since childhood, reduced vision due to pigmentary retinopathy, and behavioral abnormalities without other systemic features of MPS. In this study, we report a patient of Indian origin with MPS IIID based on a novel pathogenic variant c.1078 G>T (p.G360C) in the GNS and the presence of MCBs in muscle biopsy, characterized by several novel findings including the occurrence of pigmentary retinopathy, which extends the clinical spectrum of MPS IIID.


Subject(s)
Mucopolysaccharidosis III , Retinitis Pigmentosa , Humans , Child , Mucopolysaccharidosis III/genetics , Mucopolysaccharidosis III/diagnosis , Mucopolysaccharidosis III/pathology , Glycosaminoglycans/metabolism , Genomics , Recognition, Psychology
5.
Mol Neurobiol ; 60(9): 5309-5329, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37289385

ABSTRACT

α-Synuclein has a critical role in Parkinson's disease, but the mechanism of how extracellular α-synuclein aggregates lead to astrocytic degeneration remains unknown. Our recent study in astrocytes highlighted that α-synuclein aggregates undergo lower endocytosis than the monomeric-form, even while displaying a higher impact on glutathione-machinery and glutamate-metabolism under sublethal conditions. As optimal intracellular calcium levels are essential for these functions, we aimed to study the effect of extracellular α-synuclein aggregates on ER calcium entry. We assessed the association of extracellular aggregated-α-synuclein (WT and A30P/A53T double-mutant) with the astrocytic membrane (lipid rafts) and studied its effects on membrane fluidity, ER stress, and ER calcium refilling in three systems-purified rat primary midbrain astrocyte culture, human iPSC-derived astrocytes, and U87 cells. The corresponding timeline effect on mitochondrial membrane potential was also evaluated. Post-24 h exposure to extracellular WT and mutant α-synuclein aggregates, fluorescence-based studies showed a significant increase in astrocyte membrane rigidity over control, with membrane association being significantly higher for the double mutant aggregates. α-Synuclein aggregates also showed preferentially higher association with lipid rafts of astrocytic membrane. A simultaneous increase in ER stress markers (phosphorylated PERK and CHOP) with significantly higher SOCE was also observed in aggregate-treated astrocytes, with higher levels for double mutant variant. These observations correlate with increased expression of SOCE markers, especially Orai3, on plasma membrane. Alterations in mitochondrial membrane potential were only noted post-48 h of exposure to α-synuclein aggregates. We therefore suggest that in astrocytes, α-synuclein-aggregates preferentially associate with lipid rafts of membrane, altering membrane fluidity and consequently inducing ER stress mediated by interaction with membrane SOCE proteins, resulting in higher Ca2+ entry. A distinct cascade of events of sequential impairment of ER followed by mitochondrial alteration is observed. The study provides novel evidence elucidating relationships between extracellular α-synuclein aggregates and organellar stress in astrocytes and indicates the therapeutic potential in targeting the association of α-synuclein aggregates with astrocytic membrane.


Subject(s)
Calcium , alpha-Synuclein , Animals , Humans , Rats , alpha-Synuclein/metabolism , Calcium/metabolism , Astrocytes/metabolism , Membrane Proteins/metabolism , Calcium Signaling/physiology , Endoplasmic Reticulum/metabolism
6.
Indian J Med Microbiol ; 41: 45-52, 2023.
Article in English | MEDLINE | ID: mdl-36870749

ABSTRACT

PURPOSE: The study aims to isolate and understand cytopathogenesis, ultrastructure, genomic characteristics and phylogenetic analysis of SARS-CoV-2 virus of B.1.210 lineage, that circulated in India during first wave of the pandemic. METHODS: Clinical specimen from an interstate traveller from Maharashtra to Karnataka, in May 2020, who was positive by RT PCR for SARS-CoV-2 infection was subjected to virus isolation and Whole Genome Sequencing. Vero cells were used to study cytopathogenesis and ultrastructural features by Transmission Electron Microscopy (TEM). Phylogenetic analysis of the whole genome sequences of several SARS-CoV-2 variants downloaded from GISAID was performed in comparison with the B.1.210 variant identified in this study. RESULTS: The virus was isolated in Vero cells and identified by immunofluorescence assay and RT PCR. The growth kinetics in infected Vero cells revealed a peak viral titre at 24 â€‹h post-infection. Ultrastructural studies revealed distinct morphological changes with accumulation of membrane-bound vesicles containing pleomorphic virions in the cytoplasm, with single or multiple intranuclear filamentous inclusions and dilated rough endoplasmic reticulum with viral particles. Whole genome sequence of the clinical specimen as well as the isolated virus revealed the virus to be of lineage B.1.210 with the D614G mutation in the spike protein. Phylogenetic analysis of the whole genome sequence in comparison with other variants reported globally revealed that the isolated SARS-CoV-2 virus of lineage B.1.210 is closely related to the original Wuhan virus reference sequence. CONCLUSIONS: The SARS-CoV-2 variant B.1.210 virus isolated here showed ultrastructural features and cytopathogenesis similar to that of the virus reported during early phase of pandemic. Phylogenetic analysis showed that the isolated virus is closely related to the original Wuhan virus, thereby suggesting that the SARS-CoV-2 lineage B.1.210 that was circulating in India during the early phase of pandemic is likely to have evolved from the original Wuhan strain.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Chlorocebus aethiops , Animals , Pandemics , Phylogeny , Vero Cells , India , Genomics
7.
J Alzheimers Dis ; 94(s1): S387-S397, 2023.
Article in English | MEDLINE | ID: mdl-36336935

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) and frontotemporal dementia (FTD) are pathologically distinct neurodegenerative disorders with certain overlap in cognitive and behavioral symptoms. Both AD and FTD are characterized by synaptic loss and accumulation of misfolded proteins, albeit, in different regions of the brain. OBJECTIVE: To investigate the synaptic and organellar markers in AD and FTD through assessment of the levels of synaptic protein, neurogranin (Ng) and organellar proteins, mitofusin-2 (MFN-2), lysosomal associated membrane protein-2 (LAMP-2), and golgin A4 from neuronal exosomes. METHODS: Exosomes isolated from the plasma of healthy controls (HC), AD and FTD subjects were characterized using transmission electron microscopy. Neurodegenerative status was assessed by measurement of neurofilament light chain (NfL) using Simoa. The pooled exosomal extracts from each group were analyzed for Ng, MFN-2, LAMP-2, and golgin A4 by western blot analysis using enhanced chemiluminescence method of detection. RESULTS: The densitometric analysis of immunoreactive bands demonstrated a 65% reduction of Ng in AD and 53% in FTD. Mitochondrial protein MFN-2 showed a significant reduction by 32% in AD and 46% in FTD. Lysosomal LAMP-2 and Golgi complex associated golgin A4 were considerably increased in both AD and FTD. CONCLUSION: Changes in Ng may reflect the ongoing synaptic degeneration that are linked to cognitive disturbances in AD and FTD. Importantly, the rate of synaptic degeneration was more pronounced in AD. Changes to a similar extent in both the dementia groups in organellar proteins indicates shared mechanisms of protein accumulation/degradation common to both AD and FTD.


Subject(s)
Alzheimer Disease , Exosomes , Frontotemporal Dementia , Humans , Alzheimer Disease/metabolism , Frontotemporal Dementia/diagnosis , Exosomes/metabolism , Golgi Matrix Proteins/metabolism , Neurons/metabolism , Neurogranin
8.
Toxicol Rep ; 9: 1501-1513, 2022.
Article in English | MEDLINE | ID: mdl-36518382

ABSTRACT

Lead (Pb2+), a ubiquitously present heavy metal toxin, has various detrimental effects on memory and cognition. However, the molecular processes affected by Pb2+ causing structural and functional anomalies are still unclear. To explore this, we employed behavioral and proteomic approaches using rat pups exposed to lead acetate through maternal lactation from postnatal day 0 (P0) until weaning. Behavioral results from three-month-old rats clearly emphasized the early life Pb2+ exposure induced impairments in spatial cognition. Further, proteomic analysis of synaptosomal fractions revealed differential alteration of 289 proteins, which shows functional significance in elucidating Pb2+ induced physiological changes. Focusing on the association of Small Ubiquitin-like MOdifier (SUMO), a post-translational modification, with Pb2+ induced cognitive abnormalities, we identified 45 key SUMO target proteins. The significant downregulation of SUMO target proteins such as metabotropic glutamate receptor 3 (GRM3), glutamate receptor isoforms 2 and 3 (GRIA 2 and GRIA3) and flotilin-1 (FLOT1) indicates SUMOylation at the synapses could contribute to and drive Pb2+ induced physiological imbalance. These findings identify SUMOylation as a vital protein modifier with potential roles in hippocampal memory consolidation and regulation of cognition. Data availbility: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD034212".

9.
Indian J Pathol Microbiol ; 65(Supplement): S291-S299, 2022 May.
Article in English | MEDLINE | ID: mdl-35562161

ABSTRACT

Electron microscopy (EM) has a substantial role in the diagnosis of skeletal muscle disorders. The ultrastructural changes can be observed in muscle fibers and other components of the muscle tissue. EM serves as a confirmatory tool where the diagnosis is already established by enzyme histochemistry staining. Although it is indispensable in the diagnosis of rare forms of congenital myopathies not appreciated by light microscope, such as cylindrical spiral myopathy, zebra body myopathy, fingerprint body myopathy, and intranuclear rod myopathy, in cases not subjected to histochemical staining, it is required for definitive diagnosis in certain groups of muscle disorders, which includes congenital myopathies, metabolic myopathies in particular mitochondrial myopathies and glycogenosis, and in vacuolar myopathies. It does not have diagnostic implications in muscular dystrophies and neurogenic disorders. In the recent past, despite the availability of advanced diagnostic techniques, electron microscopy continues to play a vital role in the diagnosis of skeletal muscle disorders. This review gives an account of ultrastructural features of skeletal muscle disorders, the role of EM in the diagnosis, and its limitations.


Subject(s)
Lysosomal Storage Diseases , Muscular Diseases , Myopathies, Nemaline , Histocytochemistry , Humans , Microscopy, Electron , Muscular Diseases/congenital , Muscular Diseases/diagnosis
10.
J Neurovirol ; 28(3): 374-382, 2022 06.
Article in English | MEDLINE | ID: mdl-35352315

ABSTRACT

Chikungunya virus (CHIKV) infection, generally characterised by fever, rash and debilitating polyarthralgia, and/or arthritis, also causes complications of the central nervous system, including encephalitis. However, the role of microglial cells in the neuropathogenesis of CHIKV is poorly understood. The current study characterised the progression of CHIKV infection in the human microglial cell line CHME-3. The susceptibility of these cells to CHIKV and the viral replication kinetics were assessed during the early and late phases of infection. The cell viability was determined using the cell viability assay. Ultrastructural changes in CHIKV infected CHME-3 cells were assessed using transmission electron microscopy. The results showed that CHME-3 cells are susceptible to CHIKV infection and support viral replication with no significant loss in cell viability until 72 h post infection. Ultrastructural studies revealed the formation of cytopathic vacuoles-I (CPV-I) in the early stages and CPV-II in later stages with several virions organized along the membrane of CPV-II. Profuse vacuolation was observed in the later stages of infection. Abnormal giant mitochondria with altered cristae were observed in infected cells with an electron-dense matrix. The study establishes CHME-3 cells as a potential model for investigating the role of human microglial cells in neuropathogenicity of CHIKV.


Subject(s)
Chikungunya Fever , Chikungunya virus , Cell Line , Chikungunya virus/physiology , Humans , Microglia/pathology , Virus Replication/physiology
11.
J Pediatr Genet ; 10(4): 266-273, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34849271

ABSTRACT

Neuronal ceroid Lipofuscinosis (NCL), inherited disorders of lysosomal storage disorders, constitute the most common progressive encephalopathies with an incidence of 1.3 to 7 in 100,000 live births. We reported clinical, electrophysiological, radiological, ultrastructural, and molecular genetic features of NCL. This is a retrospective review, in a tertiary care center from January 2016 to December 2019. All children with clinical features of NCL and confirmed by pathogenic mutation and/or enzyme assay were included. A total of 60 children (male:female = 3:1) were studied. The commonest type was CLN 2 (41.7%). Neuroregression, seizures, and ataxia were present in all cases. Retinal arterial attenuation was seen in 38.33% cases. Magnetic resonance imaging (MRI) brain was abnormal in all patients, thalamic and caudate nucleus atrophy common in CLN1 (62%). Electroencephalography was abnormal in all children, but photoparoxysmal response at low intermittent photic stimulation frequencies was seen in four children of CLN2. Electron microscopy done in 43 children revealed abnormal inclusions in 20 (46.52%) children. Enzyme study showed low levels in 36 (78%) out of 46 cases. Of these, 21 had low tripeptidyl peptidase and 15 had low palmitoyl protein thioesterase levels. Molecular testing done in 26 cases showed pathogenic variant in 23 (88%) cases. Infantile onset with thalamic atrophy on MRI is common in CLN1 and refractory epilepsy, visual impairment and specific EEG changes are common in CLN2. These features are helpful in selecting enzyme assay for CLN1 versus CLN2. Electron microscopy helped in the diagnosis and genetic testing in subtyping. Thus, a multimode approach played a role in the diagnosis of NCL.

12.
Brain Dev ; 43(10): 1013-1022, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34272103

ABSTRACT

BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) is a group of rare inherited neurodegenerative disorders. Ten types of NBIA are known. Studies reporting various NBIA subtypes together are few. This study was aimed at describing clinical features, neuroimaging findings, and genetic mutations of different NBIA group disorders. METHODS: Clinical, radiological, and genetic data of patients diagnosed with NBIA in a tertiary care centre in Southern India from 2014 to 2020 was retrospectively collected and analysed. RESULTS: In our cohort of 27 cases, PLA2G6-associated neurodegeneration (PLAN) was most common (n = 13) followed by Pantothenate kinase-associated neurodegeneration (PKAN) (n = 9). We had 2 cases each of Mitochondrial membrane-associated neurodegeneration (MPAN) and Beta-propeller protein- associated neurodegeneration (BPAN) and 1 case of Kufor-Rakeb Syndrome (KRS). Walking difficulty was the presenting complaint in all PKAN cases, whereas the presentation in PLAN was that of development regression with onset at a mean age of 2 years. Overall, 50% patients of them presented with development regression and one-third had epilepsy. Presence of pyramidal signs was most common examination feature (89%) followed by one or more eye findings (81%) and movement disorders (50%). Neuroimaging was abnormal in 24/27 cases and cerebellar atrophy was the commonest finding (52%) followed by globus pallidus hypointensities (44%). CONCLUSIONS: One should have a high index of clinical suspicion for the diagnosis of NBIA in children presenting with neuroregression and vision abnormalities in presence of pyramidal signs or movement disorders. Neuroimaging and ophthalmological evaluation provide important clues to diagnosis in NBIA syndromes.


Subject(s)
Iron Metabolism Disorders/diagnosis , Neuroaxonal Dystrophies/diagnosis , Pantothenate Kinase-Associated Neurodegeneration/diagnosis , Child , Female , Humans , India/epidemiology , Iron Metabolism Disorders/epidemiology , Male , Neuroaxonal Dystrophies/epidemiology , Pantothenate Kinase-Associated Neurodegeneration/epidemiology , Retrospective Studies
13.
J Mol Neurosci ; 71(12): 2468-2473, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34106405

ABSTRACT

Desminopathies (MIM*601419) are clinically heterogeneous, manifesting with myopathy and/or cardiomyopathy and with intra-sarcoplasmic desmin-positive deposits. They have either an autosomal dominant (AD) or recessive (AR) pattern of inheritance. Desmin is a crucial intermediate filament protein regulating various cellular functions in muscle cells. Here, we report a 13-year-old girl, born of second-degree consanguineous parents, with normal developmental milestones, who presented with dilated cardiomyopathy, respiratory insufficiency and predominant distal upper limb weakness. A striking feature on muscle biopsy was the presence of a peripheral chain of nuclei in addition to myopathic features. Immunostaining showed complete lack of desmin expression, further confirmed by western blot analysis. Ultrastructurally, subsarcolemmal granular material, expanded Z-band aggregation, distortion of myofilaments, focal Z-band streaming, lobed and clustered myonuclei were observed. Next-generation sequencing revealed a novel homozygous nonsense mutation c.448C>T, p.R150X in the patient, while the parents were heterozygous carriers. Single mitochondrial DNA deletion and isolated complex IV deficiency were noted. Our findings add to the ever-expanding phenotype and molecular spectrum of desminopathies.


Subject(s)
Cardiomyopathies/genetics , Desmin/genetics , Muscular Dystrophies/genetics , Adolescent , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Desmin/chemistry , Desmin/metabolism , Female , Humans , Loss of Function Mutation , Muscle, Skeletal/metabolism , Muscle, Skeletal/ultrastructure , Muscular Dystrophies/metabolism , Muscular Dystrophies/pathology , Phenotype
14.
Int J Dermatol ; 60(10): 1179-1182, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33709389

ABSTRACT

There are several neurological diseases wherein skin biopsy is useful for diagnosis, even in the absence of skin involvement. Skin biopsy is especially relevant in diseases in which the metabolic error is unknown or has no available diagnostic biochemical test. Skin biopsy, being relatively noninvasive, obviates the need for an invasive procedure such as a brain biopsy. These disorders wherein skin biopsies are particularly useful include the progressive myoclonic epilepsies, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), neuroaxonal dystrophy, and small fiber neuropathies (SFN). We review the role of skin biopsy in such conditions with notes on preferred sites and techniques.


Subject(s)
CADASIL , Skin Diseases , Biopsy , Humans , Magnetic Resonance Imaging , Skin , Skin Diseases/diagnosis
15.
J Mol Neurosci ; 71(11): 2324-2335, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33515430

ABSTRACT

FHL1-related myopathies are rare X-linked dominant myopathies. Though clinically classified into several subgroups, spinal and scapuloperoneal muscle involvement are common to all. In this study, we identified c.449G > A, p.C150Y mutation by clinical exome sequencing in two patients from same family (son and mother) of Indian origin who presented with multiple contractures. Muscle biopsy showed numerous intracytoplasmic aggregates intensely stained on HE and MGT. The strong reactions to M-NBT revealed aggregates to be reducing bodies and positively labeled to anti-FHL1 antibody. Ultrastructurally, Z-band streaming and granular and granulofilamentous material were seen. Further, the translational evidence of mutant peptide was confirmed using mass spectrometric analysis. To establish p.C150Y as the cause for protein aggregation, in vivo studies were carried out using transgenic Drosophila model which highlighted Z-band abnormalities and protein aggregates in indirect flight muscles with compromised physiological function. Thus, recapitulating the X-linked human disease phenotype. Additionally, the molecular dynamics simulation analysis unraveled the drastic change in α-helix of LIM2, the region immediately next to site of C150Y mutation that could be the plausible cause for protein aggregation. To the best of our knowledge, this is the first study of p.C150Y mutation in FHL1 identified in Indian patients with in vivo and in silico analysis to establish the cause for protein aggregation in muscle.


Subject(s)
Genetic Diseases, X-Linked/genetics , Intracellular Signaling Peptides and Proteins/genetics , LIM Domain Proteins/genetics , Muscle Proteins/genetics , Muscle, Skeletal/metabolism , Muscular Diseases/congenital , Mutation, Missense , Protein Multimerization , Adult , Animals , Child , Drosophila melanogaster , Female , Genes, Dominant , Genetic Diseases, X-Linked/metabolism , Genetic Diseases, X-Linked/pathology , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/chemistry , LIM Domain Proteins/metabolism , Male , Muscle Proteins/chemistry , Muscle Proteins/metabolism , Muscle, Skeletal/pathology , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Protein Conformation, alpha-Helical , Protein Domains
16.
Int J Surg Pathol ; 29(1): 80-84, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32450730

ABSTRACT

A 16-year-old boy presented with a tumor located in fourth ventricle, which showed histological features of an ependymoma replete with perivascular pseudorosettes and true ependymal rosettes. Interestingly, many of the tumor cells exhibited abundant cytoplasm stuffed with a grayish brown pigment. Histochemical stains showed the pigment to be acid fast and periodic acid-Schiff positive and negative for Masson-Fontana melanin stain. Additionally, the pigment displayed brilliant autofluorescence under ultraviolet light of a fluorescent microscope. Ultrastructure examination of the pigment revealed a non-membrane-bound biphasic structure with an electron-dense core and electron-lucent periphery. Only few similar case reports mention such pigmented ependymomas to contain a mixture of neuromelanin and lipofuscin while others mention it to be melanin itself. Our workup suggests the pigment to represent lipofuscin or its derivative. Generally known to be a pigment of wear and tear, the significance of finding it in a tumor with such abundance remains to be understood and explored.


Subject(s)
Ependymoma/diagnosis , Fourth Ventricle/pathology , Adolescent , Craniotomy , Ependymoma/pathology , Ependymoma/surgery , Fourth Ventricle/diagnostic imaging , Fourth Ventricle/surgery , Humans , Lipofuscin/analysis , Magnetic Resonance Imaging , Male , Melanins/analysis , Silver Nitrate
17.
Epilepsy Behav Rep ; 14: 100369, 2020.
Article in English | MEDLINE | ID: mdl-32743541

ABSTRACT

Focal neuronal lipofuscinosis is a unique neuronal pathology, characterised by accumulation of lipofuscin within dysmorphic neurons. We report a case of 12-year-old female with drug resistant epilepsy since one and a half years of age. MRI brain showed right frontal dysplasia, and PET showed right frontal hypometabolism. She underwent electrocorticography-guided resection of the lesion. Histopathology revealed cortical dyslamination with several hypertrophic dysmorphic neurons showing intracytoplasmic granular accumulation of lipofuscin which was positive for Periodic acid-Schiff, Luxol fast blue, and autofluorescent. Ultrastructural examination revealed intracytoplasmic, non-membrane bound, electron dense material with characteristics of lipofuscin filling the neuronal soma. On immunohistochemistry, the neurons showed ring-like non-phosphorylated and phosphorylated neurofilaments enveloping the lipofuscin material, few being positive for ubiquitin. It is important to be aware of this rare entity as it can be associated with family history of seizures and has a distinct pathobiology.

18.
J Cell Sci ; 134(5)2020 07 09.
Article in English | MEDLINE | ID: mdl-32482793

ABSTRACT

Foot-and-mouth disease virus (FMDV) is a picornavirus that causes contagious acute infection in cloven-hoofed animals. FMDV replication-associated viral protein expression induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), in turn inducing autophagy to restore cellular homeostasis. We observed that inhibition of BiP (also known as HSPA5 and GRP78), a master regulator of ER stress and UPR, decreased FMDV infection confirming their involvement. Further, we show that the FMDV infection induces UPR mainly through the PKR-like ER kinase (PERK; also known as EIF2AK3)-mediated pathway. Knockdown of PERK and chemical inhibition of PERK activation resulted in decreased expression of FMDV proteins along with the reduction of autophagy marker protein LC3B-II [the lipidated form of LC3B (also known as MAP1LC3B)]. There are conflicting reports on the role of autophagy in FMDV multiplication. Our study systematically demonstrates that during FMDV infection, PERK-mediated UPR stimulated an increased level of endogenous LC3B-II and turnover of SQSTM1, thus confirming the activation of functional autophagy. Modulation of the UPR and autophagy by pharmacological and genetic approaches resulted in reduced numbers of viral progeny, by enhancing the antiviral interferon response. Taken together, this study underscores the prospect of exploring PERK-mediated autophagy as an antiviral target.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Antiviral Agents/pharmacology , Autophagy , Endoplasmic Reticulum Stress , Foot-and-Mouth Disease Virus/metabolism , Interferons , Unfolded Protein Response , eIF-2 Kinase/genetics , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...