Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Chemosphere ; 288(Pt 2): 132519, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34637862

ABSTRACT

Ocean contamination mostly comes from anthropogenic contamination in watercourses. However, what happens in desert areas where watercourses are few or nonexistent? Are these coastal areas exempt from contamination? Do the remote locations of desert areas enable pristine coastal areas? Atacama is widely known for its desert aridity and mining resources; however, human impacts in its coastal areas have not been widely studied. Coastal zone uses of this region of Chile were analyzed per province in relation to the population settlements and economic activities on the coastal edge. This study includes a review of the contamination in this desert coastal area in relation to the territorial organization, activities, and land uses. The results determined that most of the coastal edge was used for fishing and aquaculture (52%) and for conservation and protected areas (39%). However, 2% of the coastal edge was susceptible to conflicts due to shared uses. A strong lack of scientific research was detected despite environmental interest (Humboldt Current, diversity hot spots, desert blooming, algae kelps, protected areas, etc.) and economic development (impact of mining, agriculture and tourism) in the area. Most studies focused on metal concentrations in aquatic environments in the north part of the region. Studies on emerging contaminants have not been carried out in the area despite intense human settlement.


Subject(s)
Economic Development , Anthropogenic Effects , Aquaculture , Chile , Conservation of Natural Resources , Desert Climate , Humans , Hunting
2.
Chemosphere ; 264(Pt 2): 128552, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33065323

ABSTRACT

Carbon capture and storage (CCS) is one of the most promising mitigation strategies for reducing the emissions of carbon dioxide (CO2) to the atmosphere and may substantially help to decelerate global warming. There is an increasing demand for CCS sites. Nevertheless, there is a lack of knowledge of the environmental risk associated with potential leakage of CO2 from the storage sites; and even more, what happens when the seepage stops. Can the environment return to the initial equilibrium? Potential effects on native macrofauna were studied under a scenario of a 50-day CO2 leakage, and the subsequent leak closure. To accomplish the objective, Trondheim Fjord sediments and clams were exposed to an acidified environment (pH 6.9) at 29 atm for 7 weeks followed by a 14-day recovery at normal seawater conditions (pH 8.0, 29 atm). Growth and survival of clams exposed to pressure (29 atm) and reduced pH (6.9) did not significantly differ from control clams kept at 1 atm in natural seawater. Furthermore, bioaccumulation of elements in the soft tissue of clams did not register significant variations for most of the analysed elements (Cd, Cr, Pb, and Ti), while other elements (As, Cu, Fe, Ni) had decreasing concentrations in tissues under acidified conditions in contrast to Na and Mg, which registered an uptake (Ku) of 111 and 9.92 µg g-1dw d-1, respectively. This Ku may be altered due to the stress induced by acidification; and the element concentration being released from sediments was not highly affected at that pH. Therefore, a 1 unit drop in pH at the seafloor for several weeks does not appear to pose a risk for the clams.


Subject(s)
Bivalvia , Water Pollutants, Chemical , Animals , Carbon Dioxide/analysis , Climate Change , Geologic Sediments , Hydrogen-Ion Concentration , Seawater , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
3.
Sci Total Environ ; 749: 142326, 2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33370913

ABSTRACT

Recirculating aquaculture systems (RAS) are a new alternative to traditional aquaculture approaches, allowing full control over the fish production conditions, while reducing the water demand. The reduction of water exchange leads to an accumulation of dissolved organic matter (DOM) that can have potential effects on water quality, fish welfare and system performance. Despite the growing awareness of DOM in aquaculture, scarce scientific information exists for understanding the composition and transformation of DOM in RAS. In this study, a non-targeted approach using ultra-performance liquid chromatography coupled to a hybrid quadrupole-time of flight mass spectrometer (UPLC-QTOF-MS) was used to characterize compositional changes of low molecular weight (LMW) DOM in RAS, when operated under two different feed types. A total of 1823 chemicals were identified and the majority of those contained a CHON chemical group in their structure. Changes in the composition of LMW-DOM in RAS waters were observed when the standard feed was switched to RAS feed. The DOM with the use of standard feed, consisted mainly of lignin/CRAM-like, CHO and CHOS chemical groups, while the DOM that used RAS feed, was mainly composed by unsaturated hydrocarbon, CHNO and CHNOS chemical groups. The Bray-Curtis dissimilarity cluster demonstrated differences in the composition of DOM from RAS and was associated to the type of feed used. When the RAS feed was used, the Kendrick mass defect plots of -CH2- homologous units in the pump-sump (after the water treatment) showed a high removal capacity for CHNO, CHNOS and halogenated chemicals with high Kendrick mass defect, KMD > 0.7. To our knowledge, this is the first report of LMW-DOM characterization of RAS by high-resolution mass spectrometry (HRMS).


Subject(s)
Aquaculture , Water Purification , Animals , Mass Spectrometry , Molecular Weight
4.
Sci Total Environ ; 700: 134761, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31706093

ABSTRACT

Carbon capture and storage (CCS) is the third contributor to cumulative carbon emission reductions required by the second half of this century. Although this is a promising technology for reducing atmospheric CO2, it is only affordable if the confinement of the gas is guaranteed for hundreds of years. Hence, it is of paramount importance to figure out and predict the chemical and biological effects associated with potential CO2 leakage, to provide decision makers with a good basis for choosing technology and potential storage sites. To this end, a titanium reactor (1.4 m3) was used to study CO2 seepage under realistic sub-seabed conditions (30 bar pressure and 7 °C). The injection of CO2 was calibrated to decrease the pH value from 8.1 to 7.3, which may be the pH found near a leakage point. This pH value also coincides with predictions for near-future ocean pH under current CO2 emissions worldwide. The results from this study demonstrate that there are some elements, i.e., Fe, Co, Pb, Ce, Zn and Cu, present in deep marine sediments, that are strongly affected by the reduced pH levels related to CO2 addition. The dissolved concentrations of Fe, Pb and, to a lesser extent, Cr increased, due probably to weakening of the Fe/Mn shuttle by increased dissolved concentrations of CO2. Desorption processes from oxyhydroxide surfaces due to acidification may explain the release of Co, Ni and Ce observed during the experiment. The increased CO2 concentration also led to increased metal bioavailability, suggested by higher values for labile metal species. Conversely, Cd mobility seems not to be affected by CO2-associated acidification. It is concluded that the determination of those elements most affected by CO2-related acidification in a sub-seabed CO2 storage perimeter (i.e., sediment, sediment-water interface and water column) would be a simple and effective technique to verify suspected leakage.

5.
Mar Pollut Bull ; 136: 201-211, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30509800

ABSTRACT

Carbon capture and storage technology was developed as a tool to mitigate the increased emissions of carbon dioxide by capture, transportation, injection and storage of CO2 into subterranean reservoirs. There is, however, a risk of future CO2 leakage from sub-seabed storage sites to the sea-floor sediments and overlying water, causing a pH decrease. The aim of this study was to assess effects of CO2-induced seawater acidification on fertilization success and early embryonic development of the sediment-burrowing bivalve Limecola balthica L. from the Baltic Sea. Laboratory experiments using a CO2 enrichment system involved three different pH variants (pH 7.7 as control, pH 7.0 and pH 6.3, both representing environmental hypercapnia). The results showed significant fertilization success reduction under pH 7.0 and 6.3 and development delays at 4 and 9 h post gamete encounter. Several morphological aberrations (cell breakage, cytoplasm leakages, blastomere deformations) in the early embryos at different cleavage stages were observed.


Subject(s)
Bivalvia/embryology , Carbon Dioxide/blood , Seawater/chemistry , Animals , Bivalvia/physiology , Ecotoxicology/methods , Embryo, Nonmammalian , Environment , Female , Fertilization , Hydrogen-Ion Concentration , Hypercapnia/veterinary , Laboratories , Male , Oceans and Seas
6.
Chemosphere ; 213: 84-91, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30216816

ABSTRACT

As a result of the increasing pressure provoked by anthropogenic activities, the world climate is changing and oceans health is in danger. One of the most important factors affecting the marine environment is the well-known process called ocean acidification. Also, there are other natural or anthropogenic processes that produce an enrichment of CO2 in the marine environment (CO2 leakages from Carbon Capture and Storage technologies (CCS), organic matter diagenesis, volcanic vents, etc). Most of the studies related to acidification of the marine environment by enrichment of CO2 have been focused on short-term experiments. To evaluate the effects related to CO2 enrichment, laboratory-scale experiments were performed using the marine microalgae Tetraselmis chuii and Phaeodactylum tricornutum. Three different pH values (two treatments - pH 7.4 and 6.0 - and a control - pH 8.0) were tested on the selected species across four consecutive generations. Seawater was collected and exposed to different scenarios of CO2 enrichment by means of CO2 injection. The results showed different effects depending on the species and the generation used. Effects on T. chuii were shown on cell density, chlorophyll-a and metabolic activity, however, a slight adaptation across generations was found in this last parameter. P. tricornutum was more sensitive to acidification conditions through generations, with practically total growth inhibition in the fourth one. The conclusions obtained in this work are useful to address the potential ecological risk related to acidification by enrichment of CO2 on the marine ecosystem by using consecutive generations of microalgae.


Subject(s)
Carbon Dioxide/chemistry , Ecosystem , Microalgae/drug effects , Carbon Dioxide/analysis
7.
Front Physiol ; 9: 820, 2018.
Article in English | MEDLINE | ID: mdl-30057551

ABSTRACT

Oxidative stress plays key roles in the pathogenesis of retinal diseases, such as diabetic retinopathy. Reactive oxygen species (ROS) are increased in the retina in diabetes and the antioxidant defense system is also compromised. Increased ROS stimulate the release of pro-inflammatory cytokines, promoting a chronic low-grade inflammation involving various signaling pathways. An excessive production of ROS can lead to retinal endothelial cell injury, increased microvascular permeability, and recruitment of inflammatory cells at the site of inflammation. Recent studies have started unraveling the complex crosstalk between retinal endothelial cells and neuroglial cells or leukocytes, via both cell-to-cell contact and secretion of cytokines. This crosstalk is essential for the maintenance of the integrity of retinal vascular structure. Under diabetic conditions, an aberrant interaction between endothelial cells and other resident cells of the retina or invading inflammatory cells takes place in the retina. Impairment in the secretion and flow of molecular signals between different cells can compromise the retinal vascular architecture and trigger angiogenesis. In this review, the synergistic contributions of redox-inflammatory processes for endothelial dysfunction in diabetic retinopathy will be examined, with particular attention paid to endothelial cell communication with other retinal cells.

8.
Chemosphere ; 205: 24-30, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29679785

ABSTRACT

Two marine bacterial populations (Roseobacter sp. and Pseudomonas litoralis) were exposed to different concentrations of zinc (300, 625, 1250, 2000, 2500 and 5000 mg L-1) and cadmium (75, 250, 340, 500 and 1000 mg L-1) using two culture media (full nutrient Marine Broth 2216 "MB" and 1:10 (vol/vol) dilution with seawater of Marine Broth 2216 "MBSW"), in order to assess population responses depending on the culture medium and also potential adverse effects associated with these two metals. Different responses were found depending on the culture medium (Bacterial abundance (cells·mL-1), growth rates (µ, hours-1), and production of Extracellular Polysaccharides Substances (EPS) (µg glucose·cells-1). Results showed negative effects in both strains after the exposure to Zn treatments. Both strains showed highest metal sensitivity at low concentrations using both culture media. However, different results were found when exposing the bacterial populations to Cd treatments depending on the culture medium. Highest toxicity was observed using MB at low levels of Cd concentrations, whereas MBSW showed toxicity to bacteria at higher concentrations of Cd. Results not only showed adverse effects on Roseobacter sp. and Pseudomonas litoralis associated with the concentration of Zn and Cd, but also confirm that depending on the culture medium results can differ. This work suggests MBSW as an adequate culture medium to study metal toxicity bioassays in order to predict realistic effects on marine bacterial populations.


Subject(s)
Bacteria/drug effects , Cadmium/toxicity , Culture Media/pharmacology , Seawater/chemistry , Toxicity Tests/methods , Water Pollutants, Chemical/analysis , Zinc/toxicity , Bacteria/growth & development , Environmental Exposure/analysis , Risk Assessment
9.
Clin Exp Ophthalmol ; 46(7): 783-795, 2018 09.
Article in English | MEDLINE | ID: mdl-29442423

ABSTRACT

BACKGROUND: Neuropeptide Y (NPY) is a neuromodulator that is expressed in the retina. Increasing evidence suggests that NPY has pronounced anti-inflammatory effects, which might depend on the inhibition of dipeptidyl-peptidase-IV (DPP-IV). The aim of this study was to investigate the impact of type 1 diabetes mellitus (DM) and sitagliptin, a DPP-IV inhibitor, on the NPY system in the retina using an animal model. METHODS: Type 1 DM was induced in male Wistar rats by an intraperitoneal injection of streptozotocin. Starting 2 weeks after DM onset, animals were treated orally with sitagliptin (5 mg/kg.day) for 2 weeks. The expression of NPY and NPY receptors (Y1 , Y2 and Y5 receptors) was measured by quantitative polymerase chain reaction, Western blot and/or enzyme-linked immunosorbent assay. The immunoreactivity of NPY and NPY receptors was evaluated by immunohistochemistry, and the [35 S]GTPγS binding assay was used to assess the functional binding of NPY receptors. RESULTS: DM decreased the mRNA levels of NPY in the retina, as well as the protein levels of NPY and Y5 receptor. No changes were detected in the localization of NPY and NPY receptors in the retina and in the functional binding of NPY to all receptors. Sitagliptin alone reduced retinal NPY mRNA levels. The effects of DM on the NPY system were not affected by sitagliptin. CONCLUSION: DM modestly affects the NPY system in the retina and these effects are not prevented by sitagliptin treatment. These observations suggest that DPP-IV enzyme is not underlying the NPY changes detected in the retina induced by type 1 DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetic Retinopathy , Gene Expression Regulation , Neuropeptide Y , Retina , Sitagliptin Phosphate , Animals , Male , Rats , Blotting, Western , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Diabetic Retinopathy/etiology , Diabetic Retinopathy/genetics , Diabetic Retinopathy/prevention & control , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Neuropeptide Y/biosynthesis , Polymerase Chain Reaction , Random Allocation , Rats, Wistar , Retina/metabolism , Retina/pathology , RNA/genetics , Sitagliptin Phosphate/therapeutic use
10.
Front Pharmacol ; 9: 16, 2018.
Article in English | MEDLINE | ID: mdl-29416510

ABSTRACT

Glaucoma is the second cause of blindness worldwide and is characterized by the degeneration of retinal ganglion cells (RGCs) and optic nerve atrophy. Increased microglia reactivity is an early event in glaucoma that may precede the loss of RGCs, suggesting that microglia and neuroinflammation are involved in the pathophysiology of this disease. Although global changes of the purinergic system have been reported in experimental and human glaucoma, it is not known if this is due to alterations of the purinergic system of microglial cells, the resident immune cells of the central nervous system. We now studied if elevated hydrostatic pressure (EHP), mimicking ocular hypertension, changed the extracellular levels of ATP and adenosine and the expression, density and activity of enzymes, transporters and receptors defining the purinergic system. The exposure of the murine microglial BV-2 cell line to EHP increased the extracellular levels of ATP and adenosine, increased the density of ecto-nucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1, CD39) and decreased the density of the equilibrative nucleotide transporter 2 as well as the activity of adenosine deaminase. The expression of adenosine A1 receptor also decreased, but the adenosine A3 receptor was not affected. Notably, ATP and adenosine selectively control migration rather than phagocytosis, both bolstered by EHP. The results show that the purinergic system is altered in microglia in conditions of elevated pressure. Understanding the impact of elevated pressure on the purinergic system will help to unravel the mechanisms underlying inflammation and neurodegeneration associated with glaucoma.

11.
Cell Death Dis ; 8(10): e3065, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28981089

ABSTRACT

Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the retina against the damage induced by ischemia-reperfusion (I-R). The available therapeutic strategies for retinal degenerative diseases have limited potential, but the blockade of adenosine A2A receptor (A2AR) emerges as candidate strategy. Therefore, we evaluated the therapeutic potential of a selective A2AR antagonist (KW6002) against the damage elicited by I-R. The administration of KW6002 after I-R injury reduced microglia reactivity and inflammatory response and afforded protection to the retina. Moreover, we tested the ability of caffeine, an adenosine receptor antagonist, in mediating protection to the retina in the I-R injury model. We demonstrated that caffeine administration dually regulated microglia reactivity and cell death in the transient retinal ischemic model, depending on the reperfusion time. At 24 h of reperfusion, caffeine increased microglial reactivity, inflammatory response and cell death elicited by I-R. However, at 7 days of reperfusion, caffeine administration decreased microglia reactivity and reduced the levels of proinflammatory cytokines and cell death. Together, these results provide a novel evidence for the use of adenosine A2AR antagonists as potential therapy for retinal ischemic diseases and demonstrate the effect of caffeine on the regulation of microglia-mediated neuroinflammation in the transient ischemic model.


Subject(s)
Inflammation/drug therapy , Ischemia/drug therapy , Receptor, Adenosine A2A/genetics , Reperfusion Injury/drug therapy , Retinal Diseases/drug therapy , Adenosine/genetics , Adenosine/metabolism , Adenosine A2 Receptor Antagonists/administration & dosage , Animals , Caffeine/administration & dosage , Humans , Inflammation/genetics , Inflammation/pathology , Ischemia/genetics , Ischemia/pathology , Male , Microglia/drug effects , Microglia/metabolism , Microglia/pathology , Nitrobenzenes/administration & dosage , Pyridines/administration & dosage , Rats , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Retina/drug effects , Retina/pathology , Retinal Diseases/genetics , Retinal Diseases/pathology
12.
Mediators Inflamm ; 2017: 4761081, 2017.
Article in English | MEDLINE | ID: mdl-28250576

ABSTRACT

Caffeine is the major component of coffee and the most consumed psychostimulant in the world and at nontoxic doses acts as a nonselective adenosine receptor antagonist. Epidemiological evidence suggests that caffeine consumption reduces the risk of several neurological and neurodegenerative diseases. However, despite the beneficial effects of caffeine consumption in human health and behaviour, the mechanisms by which it impacts the pathophysiology of neurodegenerative diseases still remain to be clarified. A promising hypothesis is that caffeine controls microglia-mediated neuroinflammatory response associated with the majority of neurodegenerative conditions. Accordingly, it has been already described that the modulation of adenosine receptors, namely, the A2A receptor, affords neuroprotection through the control of microglia reactivity and neuroinflammation. In this review, we will summarize the main effects of caffeine in the modulation of neuroinflammation in neurodegenerative diseases.


Subject(s)
Caffeine/pharmacology , Coffee , Inflammation/metabolism , Microglia/drug effects , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Animals , Caffeine/therapeutic use , Humans , Inflammation/drug therapy , Neurodegenerative Diseases/drug therapy , Receptor, Adenosine A2A/metabolism
13.
Sci Total Environ ; 593-594: 116-123, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28342412

ABSTRACT

Carbon capture and storage (CCS) is a viable option to reduce high concentrations of CO2 and mitigate their negative effects. This option has associated risks such as possible CO2 leakage from the storage sites. So far, negative effects deriving from a CO2 release have been reported for benthic macrofauna in both polluted and nonpolluted sediments. However, bacterial communities has no considered. In this work, risk assessment was carried out in order to evaluate the possible effects in a contaminated area considering bacterial responses (total number of cells, respiring activity, changes in the bacterial community composition and diversity). Four microcosms were placed into an integrated CO2 injection system with a non-pressurized chamber to simulate four different pH treatments (pH control 7.8, 7, 6.5 and 6). Results showed an impact on bacterial communities because of the CO2 treatment. Changes in respiring activity, community composition groups and diversity were found. This study highlights the use of respiring bacteria activity not only as bioindicator for environmental risk assessment and monitoring purposes but also as a bioindicador during a CO2 leakage event or CO2 enrichment process among all the responses studied.


Subject(s)
Bacteria/metabolism , Carbon Dioxide/metabolism , Geologic Sediments/chemistry , Water Microbiology , Water Pollutants, Chemical/metabolism , Carbon , Carbon Sequestration , Environmental Biomarkers , Seawater
14.
Sci Signal ; 10(472)2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28351945

ABSTRACT

Vitamin C is essential for the development and function of the central nervous system (CNS). The plasma membrane sodium-vitamin C cotransporter 2 (SVCT2) is the primary mediator of vitamin C uptake in neurons. SVCT2 specifically transports ascorbate, the reduced form of vitamin C, which acts as a reducing agent. We demonstrated that ascorbate uptake through SVCT2 was critical for the homeostasis of microglia, the resident myeloid cells of the CNS that are essential for proper functioning of the nervous tissue. We found that depletion of SVCT2 from the plasma membrane triggered a proinflammatory phenotype in microglia and resulted in microglia activation. Src-mediated phosphorylation of caveolin-1 on Tyr14 in microglia induced the internalization of SVCT2. Ascorbate treatment, SVCT2 overexpression, or blocking SVCT2 internalization prevented the activation of microglia. Overall, our work demonstrates the importance of the ascorbate transport system for microglial homeostasis and hints that dysregulation of ascorbate transport might play a role in neurological disorders.


Subject(s)
Ascorbic Acid/metabolism , Caveolin 1/metabolism , Endocytosis , Microglia/metabolism , Neurons/metabolism , Sodium-Coupled Vitamin C Transporters/metabolism , Animals , Blotting, Western , Cell Line , Cell Membrane/metabolism , Cytokines/metabolism , Female , HEK293 Cells , Humans , Inflammation Mediators/metabolism , Male , Mice, Knockout , Microglia/cytology , Microscopy, Confocal , Phosphorylation , Rats, Wistar , Sodium-Coupled Vitamin C Transporters/genetics
15.
Mar Pollut Bull ; 116(1-2): 80-86, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28040253

ABSTRACT

CO2 storage in sub-seabed marine geological formations has been proposed as an adequate strategy to mitigate high CO2 concentration from the atmosphere. The lack of knowledge about the potential risks of this technology on marine bacteria population in presence of metals has lead us to perform laboratory-scale experiments in order to evaluate its consequences. Thus, the effects of Zn and Cd were studied under acid conditions on Roseobacter sp. and Pseudomonas litoralis. Bacterial abundance (cellsmL-1), growth rates (µ, h-1), relative inhibitory effects of CO2 (RICO2), and production of Extracellular Polysaccharides Substances (EPS) (µgGlucosecells-1) were evaluated. A decreasing exopolysaccharides (EPS) production was found under low pH. Bacterial abundance as well as growth rates showed negative effects. Data obtained in this work are useful to determine the potential effects associated with enrichment of CO2 and metals on the marine ecosystem.


Subject(s)
Carbon Dioxide/chemistry , Geologic Sediments/chemistry , Metals, Heavy/toxicity , Pseudomonas/drug effects , Roseobacter/drug effects , Seawater/chemistry , Hydrogen-Ion Concentration , Water Microbiology , Water Pollutants, Chemical
16.
ASN Neuro ; 7(4)2015.
Article in English | MEDLINE | ID: mdl-26311075

ABSTRACT

Neuropeptide Y (NPY) is expressed in mammalian retina but the location and potential modulatory effects of NPY receptor activation remain largely unknown. Retinal ganglion cell (RGC) death is a hallmark of several retinal degenerative diseases, particularly glaucoma. Using purified RGCs and ex vivo rat retinal preparations, we have measured RGC intracellular free calcium concentration ([Ca2+]i) and RGC spiking activity, respectively. We found that NPY attenuated the increase in the [Ca2+]i triggered by glutamate mainly via Y1 receptor activation. Moreover, (Leu31, Pro34)-NPY, a Y1/Y5 receptor agonist, increased the initial burst response of OFF-type RGCs, although no effect was observed on RGC spontaneous spiking activity. The Y1 receptor activation was also able to directly modulate RGC responses by attenuating the NMDA-induced increase in RGC spiking activity. These results suggest that Y1 receptor activation, at the level of inner or outer plexiform layers, leads to modulation of RGC receptive field properties. Using in vitro cultures of rat retinal explants exposed to NMDA, we found that NPY pretreatment prevented NMDA-induced cell death. However, in an animal model of retinal ischemia-reperfusion injury, pretreatment with NPY or (Leu31, Pro34)-NPY was not able to prevent apoptosis or rescue RGCs. In conclusion, we found modulatory effects of NPY application that for the first time were detected at the level of RGCs. However, further studies are needed to evaluate whether NPY neuroprotective actions detected in retinal explants can be translated into animal models of retinal degenerative diseases.


Subject(s)
Receptors, Neuropeptide Y/metabolism , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/metabolism , Animals , Animals, Newborn , Calcium/metabolism , Cells, Cultured , Disease Models, Animal , Electroretinography , Gene Expression Regulation/drug effects , Guanosine 5'-O-(3-Thiotriphosphate)/pharmacokinetics , In Situ Nick-End Labeling , Male , Neuropeptide Y/agonists , Neuropeptide Y/analogs & derivatives , Neuropeptide Y/antagonists & inhibitors , Neuropeptide Y/genetics , Neuropeptide Y/metabolism , Neuropeptide Y/pharmacology , Peptide Fragments/pharmacology , Protein Binding/drug effects , RNA, Messenger/metabolism , Rats , Rats, Long-Evans , Rats, Wistar , Receptors, Neuropeptide Y/agonists , Receptors, Neuropeptide Y/antagonists & inhibitors , Receptors, Neuropeptide Y/genetics , Retinal Diseases/pathology , Retinal Diseases/physiopathology , Sulfur Isotopes/pharmacokinetics , Transcription Factor Brn-3A/metabolism
17.
Mediators Inflamm ; 2015: 673090, 2015.
Article in English | MEDLINE | ID: mdl-25873768

ABSTRACT

Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy.


Subject(s)
Inflammation/complications , Microglia/physiology , Retinal Degeneration/etiology , Diabetic Retinopathy/etiology , Glaucoma/etiology , Humans , Macular Degeneration/etiology , Neurodegenerative Diseases/physiopathology , Retina/cytology
18.
Mediators Inflamm ; 2014: 465694, 2014.
Article in English | MEDLINE | ID: mdl-25132733

ABSTRACT

Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupled A2A receptor (A2AR). This is in striking agreement with the ability of A2AR blockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role of A2AR has been scarcely explored. This review aims to compare inflammatory features of Parkinson's and Alzheimer's diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential of A2AR in these degenerative conditions.


Subject(s)
Brain/metabolism , Brain/pathology , Microglia/metabolism , Receptor, Adenosine A2A/metabolism , Retina/metabolism , Retina/pathology , Animals , Humans , Neurodegenerative Diseases
19.
J Biol Chem ; 287(46): 38680-94, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-22992730

ABSTRACT

In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.


Subject(s)
Calcium/chemistry , Neurons/pathology , alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/chemistry , Animals , Apoptosis , Calcium Signaling , Cell Death , Chick Embryo , Extracellular Signal-Regulated MAP Kinases/metabolism , Male , Neurons/metabolism , Nitric Oxide Synthase Type I/metabolism , Phosphorylation , Rats , Rats, Long-Evans , Rats, Wistar , Receptors, Glutamate/metabolism , Retina/metabolism , Signal Transduction , src-Family Kinases/metabolism
20.
Mol Vis ; 15: 1620-30, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19693289

ABSTRACT

PURPOSE: Diabetic retinopathy (DR) is a leading cause of vision loss and blindness among adults between the age 20 to 74. Changes in ionotropic glutamate receptor subunit composition can affect retinal glutamatergic neurotransmission and, therefore, contribute to visual impairment. The purpose of this study was to investigate whether diabetes leads to changes in ionotropic glutamate receptor subunit expression at the protein and mRNA level in the rat retina. METHODS: Changes in the expression of ionotropic glutamate receptor subunits were investigated at the mRNA and protein levels in retinas of streptozotocin (STZ)-induced diabetic and age-matched control rats. Animals were euthanized one, four and 12 weeks after the onset of diabetes. Retinal protein extracts were prepared, and the receptor subunit levels were assessed by western blotting. Transcript levels were assessed by real-time quantitative PCR. RESULTS: Transcript levels of most ionotropic glutamate receptor subunits were not significantly changed in the retinas of diabetic rats, as compared to age-matched controls but protein levels of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA), kainate, and N-methyl-D-aspartic acid receptors (NMDA) receptors were found to be altered. CONCLUSIONS: The results provide evidence that diabetes affects the retinal content of ionotropic glutamate receptor subunits at the protein level. The possible implications of these changes on retinal physiology and visual impairment in DR are discussed.


Subject(s)
Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Retina/metabolism , Retina/pathology , Alternative Splicing/genetics , Animals , Blood Glucose/metabolism , Diabetes Mellitus/pathology , Protein Subunits/genetics , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Receptors, AMPA/genetics , Receptors, AMPA/metabolism , Receptors, Kainic Acid/genetics , Receptors, Kainic Acid/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...