Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732721

ABSTRACT

In this study, an array of environmentally friendly and heavy-duty anticorrosion composite coatings were prepared. The synthesis involved amine-capped aniline trimer (ACAT) produced by an oxidative coupling reaction and graphene oxide (GO) prepared based on Hummer's method, and later, the waterborne epoxy thermoset composite (WETC) coatings were prepared by thermal ring-opening polymerization of EP 147w, a commercial waterborne epoxy resin, in the presence of ACAT and/or GO with zinc dust (ZD). A synergistic effect was observed by replacing a significant amount of the ZD loading in the WETC by simultaneously incorporating a small amount of ACAT and GO. The electrochemical corrosion measurements of the as-prepared WETC coatings indicated that incorporating 5% w/w ACAT or 0.5% w/w GO separately replaced approximately 30% w/w or 15% w/w of the ZD, respectively. Moreover, the WETC coatings containing 5% w/w ACAT and 0.5% w/w GO simultaneously were found to replace 45% w/w of the ZD. A salt spray test based on ASTM B-117 also showed a consistent trend with the electrochemical results. Incorporating small amounts of ACAT and GO in WETC coatings instead of ZD not only maintains the anticorrosion performance but also enhances adhesion and abrasion resistance, as demonstrated by the adhesion and abrasion tests.

2.
Polymers (Basel) ; 15(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36771986

ABSTRACT

In this study, a high-performance H2S sensor that operates at RT was successfully fabricated using biodegradable electroactive polymer-polyurethane-urea (PUU) and PUU-activated-carbon (AC) composites as sensitive material. The PUU was synthesized through the copolymerization of biodegradable polycaprolactone diol and an electroactive amine-capped aniline trimer. AC, with a large surface area of 1620 m2/g and a pore diameter of 2 nm, was derived from coconut-shell waste. The composites, labeled PUU-AC1 and PUU-AC3, were prepared using a physical mixing method. The H2S-gas-sensing performance of PUU-AC0, PUU-AC1, and PUU-AC3 was evaluated. It was found that the PUU sensor demonstrated good H2S-sensing performance, with a sensitivity of 0.1269 ppm-1 H2S. The H2S-gas-sensing results indicated that the PUU-AC composites showed a higher response, compared with PUU-AC0. The enhanced H2S-response of the PUU-AC composites was speculated to be due to the high surface-area and abounding reaction-sites, which accelerated gas diffusion and adsorption and electron transfer. When detecting trace levels of H2S gas at 20 ppm, the sensitivity of the sensors based on PUU-AC1 and PUU-AC3 increased significantly. An observed 1.66 and 2.42 times' enhancement, respectively, in the sensors' sensitivity was evident, compared with PUU-AC0 alone. Moreover, the as-prepared sensors exhibited significantly high selectivity toward H2S, with minimal to almost negligible responses toward other gases, such as SO2, NO2, NH3, CO, and CO2.

3.
Polymers (Basel) ; 13(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946296

ABSTRACT

In this paper, carbon aerogel (CA)-polyaniline (PANI) composites were prepared and first applied in the study of H2S gas sensing. Here, 1 and 3 wt% of as-obtained CA powder were blended with PANI to produce composites, which are denoted by PANI-CA-1 and PANI-CA-3, respectively. For the H2S gas-sensing studies, the interdigitated electrode (IDE) was spin-coated by performing PANI and PANI-CA composite dispersion. The H2S gas-sensing properties were studied in terms of the sensor's sensitivity, selectivity and repeatability. IDE coated with PANI-CA composites, as compared with pristine PANI, achieved higher sensor sensitivity, higher selectivity and good repeatability. Moreover, composites that contain higher loading of CA (e.g., 3 wt%) perform better than composites with lower loading of CA. At 1 ppm, PANI-CA-3 displayed increased sensitivity of 452% at relative humidity of 60% with a fast average response time of 1 s compared to PANI.

4.
Polymers (Basel) ; 13(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33451036

ABSTRACT

In this present work, an electrochemical sensor was developed for the sensing of uric acid (UA). The sensor was based on a carbon paste electrode (CPE) modified with electroactive polyimide (EPI) synthesized using aniline tetramer (ACAT) decorated with reduced nanoparticles (NPs) of Au, Pt, and Ag. The initial step involved the preparation and characterization of ACAT. Subsequently, the ACAT-based EPI synthesis was performed by chemical imidization of its precursors 4,4'-(4.4'-isopropylidene-diphenoxy) bis (phthalic anhydride) BPADA and ACAT. Then, EPI was doped with distinctive particles of Ag, Pt and Au, and the doped EPIs were abbreviated as EPIS, EPIP and EPIG, respectively. Their structures were characterized by XRD, XPS, and TEM, and the electrochemical properties were determined by cyclic voltammetry and chronoamperometry. Among these evaluated sensors, EPI with Au NPs turned out the best with a sensitivity of 1.53 uA uM-1 UA, a low limit of detection (LOD) of 0.78 uM, and a linear detection range (LDR) of 5-50 uM UA at a low potential value of 310 mV. Additionally, differential pulse voltammetric (DPV) analysis showed that the EPIG sensor showed the best selectivity for a tertiary mixture of UA, dopamine (DA), and ascorbic acid (AA) as compared to EPIP and EPIS.

5.
Int J Biol Macromol ; 162: 723-736, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32553972

ABSTRACT

Remarkable properties of hydrogels are compromised by failure to recover from damage, bringing their intended functions to an end. To address this, hydrogels can be functionalized with self-healing property to enable them to restore themselves after damage, thus, extending their lifetime. Herein, hydrogels were prepared by cross-linking acrylamide-modified ß-chitin (Am-ß-Chn) with alginate dialdehyde (ADA) to form Schiff base, showing IR characteristic peak at 1650 cm-1, attributed to the stretching vibration of CN. The dynamic Schiff base and H-bond rendered the double crosslinked hydrogels self-healing as demonstrated by continuous step strain rheology. Characterization of the hydrogels revealed excellent biocompatibility, biodegradability, injectability and self-healing properties. Furthermore, the wound healing property of the hydrogels was investigated in vivo using zebrafish as a model system. Indirect application of Am-ß-Chn/ADA hydrogel remarkably led to ~87% wound healing as compared to control which gave ~50%, suggesting that hydrogels are effective in accelerating wound healing. However, a clear understanding of the exact mechanism of its wound healing property remains to be investigated. To the best of our knowledge, this is the first innovation of developing novel double crosslinked Am-ß-Chn/ADA hydrogels with both self-healing and accelerated wound healing properties, directly from marine-food wastes.


Subject(s)
Alginates , Biocompatible Materials , Chitin , Hydrogels , Wound Healing/drug effects , Alginates/chemistry , Alginates/pharmacology , Animals , Biocompatible Materials/pharmacology , Chitin/chemistry , Chitin/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Schiff Bases , Zebrafish
6.
Int J Biol Macromol ; 154: 1565-1575, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31706816

ABSTRACT

Chitin is the second most abundant biomass on earth but exploited the least. In this study, wastes from Uroteuthis duvauceli was utilized to extract 38.79 ±â€¯1.38% dry weight of ß-chitin using a new combination of decolorization, demineralization, and deproteinization processes. ß-chitin was then derivatized with acrylamide in an efficient and green aqueous 8 wt% NaOH/4 wt% urea solvent via one-pot etherification. The success of carbamoylethyl ether of chitin and carboxyethyl chitin synthesis was confirmed by FTIR, 1H NMR, 13C NMR, XRD, SEM, TGA, and DSC. The synthesized acrylamide-modified ß-chitin derivatives were shown to exhibit water solubility and lower decomposition temperatures, which are primarily due to the disruption of the crystalline structure of ß-chitin upon its dissolution and modification. In this era of climate change, this desirable strategy of harnessing ß-chitin from wastes and converting it to value-added products is highly sought to mitigate the continuing ecological and economical imbalance brought about by marine-food wastes. To the best of our knowledge, this novel contribution is the first to report biorefinery of squid pens from this particular species and functionalizing it with acrylamide in a facile manner, thus, offering greater potential for future development to biocompatible chitin-based biomaterials intended for industrial, pharmaceutical and biomedical applications.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Cephalopoda/chemistry , Oligosaccharides/chemistry , Oligosaccharides/chemical synthesis , Waste Products , Acrylamide/chemistry , Animals , Chemistry Techniques, Synthetic , Green Chemistry Technology , Solubility , Temperature
7.
Polymers (Basel) ; 11(12)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31766447

ABSTRACT

This research paper presents a new application of electroactive polyimide doped with gold nanoparticles (PI/AuNPs) as a chemiresistor sensor for detecting hydrogen sulfide gas. The synthesis of PI/AuNPs was done in a simple 3-step process of polymerization using the as prepared amine-capped aniline trimer (ACAT), followed by imidization, and doping. Spectral analyses via FTIR, LC-MS and 1H-NMR confirmed the formation of amine-capped aniline trimer with a MW of 288 g mol-1. Comparison of ACAT, BSAA, and PI FTIR spectra showed successful polymerization of the last, while XRD validated the incorporation of metal nanoparticles onto the polymer matrix, showing characteristic diffraction peaks corresponding to gold. Furthermore, TEM, and FE-SEM revealed the presence of well-dispersed Au nanoparticles with an average diameter of about 60 nm. The electroactive PI/AuNPs-based sensor showed a sensitivity of 0.29% ppm-1 H2S at a linear concentration range of 50 to 300 ppm H2S (r = 0.9777). The theoretical limit of detection was found at 0.142 ppm or 142 ppb H2S gas. The sensor provided a stable response reading at an average response time of 43 ± 5 s, which was easily recovered after an average time of 99 ± 5 s. The sensor response was highly repeatable and reversible, with RSD values of 8.88%, and 8.60%, respectively. Compared with the performance of the conventional conducting polyaniline also doped with gold nanoparticles (PANI/AuNPs), the fabricated electroactive PI/AuNPs exhibited improved sensing performance making it a potential candidate in monitoring H2S in the environment and for work-related safety.

8.
Talanta ; 164: 439-444, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28107954

ABSTRACT

Headspace Fourier Transform Infrared Spectroscopy (HS-FTIR) in tandem with chemometrics was applied to differentiate several species of the genus Pandanus. The headspace was generated from each Pandanus sample after incubation in a tightly sealed sample chamber. The resulting FTIR spectra of the headspace samples were found to be almost similar, but the application of principal component analysis (PCA) effectively differentiated the species. The unique spectral features for some samples were highlighted in the second-derivative FTIR spectra. A higher variance was exhibited in the PCA bi-plot of the 2nd derivative spectral data. The principal components differentiated not only the species, but also the cultivars or varieties, which formed distinct but proximate clusters. The manner of clustering obtained in this study resembled the behavior reported in a Random Amplified Polymorphic DNA analysis conducted on the Pandanus samples. The results demonstrate the potential of headspace FTIR spectroscopy as a simple, rapid, non-destructive, and relatively inexpensive method to discriminate between plant species and varieties.


Subject(s)
Pandanaceae/chemistry , Pandanaceae/classification , Spectroscopy, Fourier Transform Infrared/methods , Cluster Analysis , Principal Component Analysis
9.
Talanta ; 146: 75-82, 2016.
Article in English | MEDLINE | ID: mdl-26695237

ABSTRACT

An array of chemiresistors based on conducting polymers was assembled for the differentiation of coconut oil products. The chemiresistor sensors were fabricated through the potentiostatic electrodeposition of polyaniline (PANi), polypyrrole (PPy) and poly(3-methylthiophene) (P-3MTp) on the gap separating two planar gold electrodes set on a Teflon substrate. The change in electrical resistance of the sensors was measured and observed after exposing the array to the headspace of oil samples. The sensor response was found rapid, reversible and reproducible. Different signals were obtained for each coconut oil sample and pattern recognition techniques were employed for the analysis of the data. The developed system was able to distinguish virgin coconut oil (VCO) from refined, bleached & deodorised coconut oil (RBDCO), flavoured VCO, homemade VCO, and rancid VCO.


Subject(s)
Electric Conductivity , Electrochemistry/instrumentation , Plant Oils/analysis , Polymers/chemistry , Cluster Analysis , Coconut Oil , Electric Impedance , Electroplating , Food Quality , Plant Oils/chemistry , Polytetrafluoroethylene/chemistry , Principal Component Analysis , Volatilization
10.
Int J Pharm ; 422(1-2): 254-63, 2012 Jan 17.
Article in English | MEDLINE | ID: mdl-22101281

ABSTRACT

A novel extrusion printing system was used to create drug delivery structures wherein dexamethasone-21-phosphate disodium salt (Dex21P) was encapsulated within a biodegradable polymer (PLGA) and water soluble poly(vinyl alcohol) (PVA) configurations. The ability to control the drug release profile through the spatial distribution of drug within the printed 3-dimensional structures is demonstrated. The fabricated configurations were characterised by optical microscopy and SEM to evaluate surface morphology. The results clearly demonstrate the successful encapsulation of dexamethasone within a laminated PLGA:PVA structure. The resulting drug release profiles from the structures show a two stage release profile with distinctly different release rates and minimal initial burst release observed. Dexamethasone release was monitored over a 4-month period. This approach clearly demonstrates that the extrusion printing technique provides a facile and versatile approach to fabrication of novel drug delivery platforms.


Subject(s)
Dexamethasone/analogs & derivatives , Drug Carriers , Lactic Acid/chemistry , Polyglycolic Acid/chemistry , Polyvinyl Alcohol/chemistry , Chemistry, Pharmaceutical , Delayed-Action Preparations , Dexamethasone/chemistry , Drug Compounding , Kinetics , Microscopy, Electron, Scanning , Molecular Structure , Polylactic Acid-Polyglycolic Acid Copolymer , Solubility , Surface Properties , Technology, Pharmaceutical/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...