Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Ann Bot ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38535525

ABSTRACT

BACKGROUND AND AIMS: Pollinators provide critical ecosystem services, maintaining biodiversity and benefiting global food production. However, plants, pollinators, and their mutualistic interactions may be affected by drought, which has increased in severity and frequency under climate change. Using two annual, insect-pollinated wildflowers (Phacelia campanularia and Nemophila menziesii), we asked how drought impacts floral traits and foraging preferences of a solitary bee (Osmia lignaria) and explore potential implications for plant reproduction. METHODS: In greenhouses, we experimentally subjected plants to drought to induce water stress, as verified by leaf water potential. To assess the impact of drought on floral traits, we measured flower size, floral display size, nectar volume, and nectar sugar concentration. To explore how drought-induced effects on floral traits affected bee foraging preferences, we performed choice trials. Individual female bees were placed into foraging arenas with two conspecific plants, one droughted and one non-droughted, and were allowed to forage freely. KEY RESULTS: We determined that P. campanularia is more drought-tolerant than N. menziesii based on measures of turgor loss point, and confirmed that droughted plants were more drought-stressed than non-droughted plants. For droughted plants of both species, floral display size was reduced, and flowers were smaller and produced less, more-concentrated nectar. We found that bees preferred non-droughted flowers of N. menziesii. However, bee preference for non-droughted P. campanularia flowers depended on the time of day and was detected only in the afternoon. CONCLUSIONS: Our findings indicate that bees prefer visiting non-droughted flowers, likely reducing pollination success for drought-stressed plants. Lack of preference for non-droughted P. campanularia flowers in the morning may reflect the higher drought tolerance of this species. This work highlights the potentially intersecting, short-term physiological and pollinator behavioral responses to drought and suggests that such responses may reshape plant-pollinator interactions, ultimately reducing reproductive output for less drought-tolerant wildflowers.

2.
Tree Physiol ; 44(3)2024 02 11.
Article in English | MEDLINE | ID: mdl-38284819

ABSTRACT

As climate change exacerbates drought stress in many parts of the world, understanding plant physiological mechanisms for drought survival is critical to predicting ecosystem responses. Stem net photosynthesis, which is common in arid environments, may be a drought survival trait, but whether the additional carbon fixed by stems contributes to plant hydraulic function and drought survival in arid land plants is untested. We conducted a stem light-exclusion experiment on saplings of a widespread North American desert tree species, Parkinsonia florida L., and after shading acclimation, we then subjected half of the plants to a drought treatment to test the interaction between light exclusion and water limitation on growth, leaf and stem photosynthetic gas exchange, xylem embolism assessed with micro-computed tomography and gravimetric techniques, and survival. Growth, stem photosynthetic gas exchange, hydraulic function and survival all showed expected reductions in response to light exclusion. However, stem photosynthesis mitigated the drought-induced reductions in gas exchange, xylem embolism (percent loss of conductivity, PLC) and mortality. The highest mortality was in the combined light exclusion and drought treatment, and was related to stem PLC and native sapwood-specific hydraulic conductivity. This research highlights the integration of carbon economy and water transport. Our results show that additional carbon income by photosynthetic stems has an important role in the growth and survival of a widespread desert tree species during drought. This shift in function under conditions of increasing stress underscores the importance of considering stem photosynthesis for predicting drought-induced mortality not only for the additional supply of carbon, but also for its extended benefits for hydraulic function.


Subject(s)
Droughts , Embolism , Ecosystem , X-Ray Microtomography , Photosynthesis/physiology , Water/physiology , Plant Leaves/physiology , Trees/physiology , Carbon , Plant Stems , Xylem/physiology
3.
Conserv Physiol ; 11(1): coad073, 2023.
Article in English | MEDLINE | ID: mdl-37711583

ABSTRACT

Plant species of concern often occupy narrow habitat ranges, making climate change an outsized potential threat to their conservation and restoration. Understanding the physiological status of a species during stress has the potential to elucidate current risk and provide an outlook on population maintenance. However, the physiological status of a plant can be difficult to interpret without a reference point, such as the capacity to tolerate stress before loss of function, or mortality. We address the application of plant physiology to conservation biology by distinguishing between two physiological approaches that together determine plant status in relation to environmental conditions and evaluate the capacity to avoid stress-induced loss of function. Plant physiological status indices, such as instantaneous rates of photosynthetic gas exchange, describe the level of physiological activity in the plant and are indicative of physiological health. When such measurements are combined with a reference point that reflects the maximum value or environmental limits of a parameter, such as the temperature at which photosynthesis begins to decline due to high temperature stress, we can better diagnose the proximity to potentially damaging thresholds. Here, we review a collection of useful plant status and reference point measurements related to photosynthesis, water relations and mineral nutrition, which can contribute to plant conservation physiology. We propose that these measurements can serve as important additional information to more commonly used phenological and morphological parameters, as the proposed parameters will reveal early warning signals before they are visible. We discuss their implications in the context of changing temperature, water and nutrient supply.

4.
Front Microbiol ; 14: 1128631, 2023.
Article in English | MEDLINE | ID: mdl-37234525

ABSTRACT

Introduction: In dryland systems, biological soil crusts (biocrusts) can occupy large areas of plant interspaces, where they fix carbon following rain. Although distinct biocrust types contain different dominant photoautotrophs, few studies to date have documented carbon exchange over time from various biocrust types. This is especially true for gypsum soils. Our objective was to assess the carbon exchange of biocrust types established at the world's largest gypsum dune field at White Sands National Park. Methods: We sampled five different biocrust types from a sand sheet location in three different years and seasons (summer 2020, fall 2021, and winter 2022) for carbon exchange measurements in controlled lab conditions. Biocrusts were rehydrated to full saturation and light incubated for 30 min, 2, 6, 12, 24, and 36 h. Samples were then subject to a 12-point light regime with a LI-6400XT photosynthesis system to determine carbon exchange. Results: Biocrust carbon exchange values differed by biocrust type, by incubation time since wetting, and by date of field sampling. Lichens and mosses had higher gross and net carbon fixation rates than dark and light cyanobacterial crusts. High respiration rates were found after 0.5 h and 2 h incubation times as communities recovered from desiccation, leveling off after 6 h incubation. Net carbon fixation of all types increased with longer incubation time, primarily as a result of decreasing respiration, which suggests rapid recovery of biocrust photosynthesis across types. However, net carbon fixation rates varied from year to year, likely as a product of time since the last rain event and environmental conditions preceding collection, with moss crusts being most sensitive to environmental stress at our study sites. Discussion: Given the complexity of patterns discovered in our study, it is especially important to consider a multitude of factors when comparing biocrust carbon exchange rates across studies. Understanding the dynamics of biocrust carbon fixation in distinct crust types will enable greater precision of carbon cycling models and improved forecasting of impacts of global climate change on dryland carbon cycling and ecosystem functioning.

5.
Biol Lett ; 19(1): 20220448, 2023 01.
Article in English | MEDLINE | ID: mdl-36596464

ABSTRACT

Urbanization creates novel ecosystems comprised of species assemblages and environments with no natural analogue. Moreover, irrigation can alter plant function compared to non-irrigated systems. However, the capacity of irrigation to alter functional trait patterns across multiple species is unknown but may be important for the dynamics of urban ecosystems. We evaluated the hypothesis that urban irrigation influences plasticity in functional traits by measuring carbon-gain and water-use traits of 30 tree species planted in Southern California, USA spanning a coastal-to-desert gradient. Tree species respond to irrigation through increasing the carbon-gain trait relationship of leaf nitrogen per specific leaf area compared to their native habitat. Moreover, most species shift to a water-use strategy of greater water loss through stomata when planted in irrigated desert-like environments compared to coastal environments, implying that irrigated species capitalize on increased water availability to cool their leaves in extreme heat and high evaporative demand conditions. Therefore, irrigated urban environments increase the plasticity of trait responses compared to native ecosystems, allowing for novel response to climatic variation. Our results indicate that trees grown in water-resource-rich urban ecosystems can alter their functional traits plasticity beyond those measured in native ecosystems, which can lead to plant trait dynamics with no natural analogue.


Subject(s)
Ecosystem , Trees , Environment , Carbon , Water/physiology , Plant Leaves
7.
Nat Commun ; 13(1): 5005, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36008385

ABSTRACT

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Subject(s)
Forests , Phosphorus , Carbon , Photosynthesis , Plant Leaves/physiology , Trees/physiology
8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969847

ABSTRACT

Paleoclimatic evidence indicating a series of droughts in the Yucatan Peninsula during the Terminal Classic period suggests that climate change may have contributed to the disruption or collapse of Classic Maya polities. Although climate change cannot fully account for the multifaceted, political turmoil of the period, it is clear that droughts of strong magnitude could have limited food availability, potentially causing famine, migration, and societal decline. Maize was undoubtedly an important staple food of the ancient Maya, but a complete analysis of other food resources that would have been available during drought remains unresolved. Here, we assess drought resistance of all 497 indigenous food plant species documented in ethnographic, ethnobotanical, and botanical studies as having been used by the lowland Maya and classify the availability of these plant species and their edible components under various drought scenarios. Our analysis indicates availability of 83% of food plant species in short-term drought, but this percentage drops to 22% of food plant species available in moderate drought up to 1 y. During extreme drought, lasting several years, our analysis indicates availability of 11% of food plant species. Our results demonstrate a greater diversity of food sources beyond maize that would have been available to the Maya during climate disruption of the Terminal Classic period than has been previously acknowledged. While drought would have necessitated shifts in dietary patterns, the range of physiological drought responses for the available food plants would have allowed a continuing food supply under all but the most dire conditions.


Subject(s)
Diet , Droughts , Plants, Edible , Agriculture , History, Ancient , Humans , Indians, Central American
10.
New Phytol ; 232(1): 404-417, 2021 10.
Article in English | MEDLINE | ID: mdl-34153132

ABSTRACT

Minimum water potential (Ψmin ) is a key variable for characterizing dehydration tolerance and hydraulic safety margins (HSMs) in plants. Ψmin is usually estimated as the absolute minimum tissue Ψ experienced by a species, but this is problematic because sample extremes are affected by sample size and the underlying probability distribution. We compare alternative approaches to estimate Ψmin and assess the corresponding uncertainties and biases; propose statistically robust estimation methods based on extreme value theory (EVT); and assess the implications of our results for the characterization of hydraulic risk. Our results show that current estimates of Ψmin and HSMs are biased, as they are strongly affected by sample size. Because sampling effort is generally higher for species living in dry environments, the differences in current Ψmin estimates between these species and those living under milder conditions are partly artefactual. When this bias is corrected using EVT methods, resulting HSMs tend to increase substantially with resistance to embolism across species. Although data availability and representativeness remain the main challenges for proper determination of Ψmin , a closer look at Ψ distributions and the use of statistically robust methods to estimate Ψmin opens new ground for characterizing plant hydraulic risks.


Subject(s)
Water , Xylem , Plant Leaves
11.
J Ecol ; 109(1): 519-540, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33536686

ABSTRACT

Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long-term carbon sequestration.Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour-intensive and ecosystem-scale manipulation experiments, which are infeasible in most situations.We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process-based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana-infested forests. Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process-based vegetation model.

12.
Tree Physiol ; 41(2): 240-253, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33313911

ABSTRACT

Shade tolerance is a widespread strategy of rainforest understory plants. Many understory species have green young stems that may assimilate CO2 and contribute to whole-plant carbon balance. Cacao commonly grows in the shaded understory and recent emphasis has been placed on diversifying the types of trees used to shade cacao plants to achieve additional ecosystem services. We studied three agricultural cacao cultivars growing in the shade of four timber species (Cedrela odorata L., Cordia thaisiana Agostini, Swietenia macrophylla King and Tabebuia rosea (Bertol) A.D.C.) in an agroforestry system to (i) evaluate the timber species for their effect on the physiological performance of three cacao cultivars; (ii) assess the role of green stems on the carbon economy of cacao; and (iii) examine coordination between stem hydraulic conductivity and stem photosynthesis in cacao. Green young stem photosynthetic CO2 assimilation rate was positive and double leaf CO2 assimilation rate, indicating a positive contribution of green stems to the carbon economy of cacao; however, green stem area is smaller than leaf area and its relative contribution is low. Timber species showed a significant effect on leaf gas exchange traits and on stomatal conductance of cacao, and stem water-use efficiency varied among cultivars. There were no significant differences in leaf-specific hydraulic conductivity among cacao cultivars, but sapwood-specific hydraulic conductivity varied significantly among cultivars and there was an interactive effect of cacao cultivar × timber species. Hydraulic efficiency was coordinated with stem-stomatal conductance, but not with leaf-stomatal conductance or any measure of photosynthesis. We conclude that different shade regimes determined by timber species and the interaction with cacao cultivar had an important effect on most of the physiological traits and growth variables of three cacao cultivars growing in an agroforestry system. Results suggested that C. odorata is the best timber species to provide partial shade for cacao cultivars in the Barlovento region in Venezuela, regardless of cultivar origin.


Subject(s)
Cacao , Trees , Ecosystem , Photosynthesis , Plant Leaves , Water
13.
Tree Physiol ; 41(1): 24-34, 2021 01 09.
Article in English | MEDLINE | ID: mdl-32803244

ABSTRACT

Wood density (WD) is often used as a proxy for hydraulic traits such as vulnerability to drought-induced xylem cavitation and maximum water transport capacity, with dense-wooded species generally being more resistant to drought-induced xylem cavitation, having lower rates of maximum water transport and lower sapwood capacitance than light-wooded species. However, relationships between WD and the hydraulic traits that they aim to predict have not been well established in tropical forests, where modeling is necessary to predict drought responses for a high diversity of unmeasured species. We evaluated WD and relationships with stem xylem vulnerability by measuring cavitation curves, sapwood water release curves and minimum seasonal water potential (Ψmin) on upper canopy branches of six tree species and three liana species from a single wet tropical forest site in Panama. The objective was to better understand coordination and trade-offs among hydraulic traits and the potential utility of these relationships for modeling purposes. We found that parameters from sapwood water release curves such as capacitance, saturated water content and sapwood turgor loss point (Ψtlp,x) were related to WD, whereas stem vulnerability curve parameters were not. However, the water potential corresponding to 50% loss of hydraulic conductivity (P50) was related to Ψtlp,x and sapwood osmotic potential at full turgor (πo,x). Furthermore, species with lower Ψmin showed lower P50, Ψtlp,x and πo,x suggesting greater drought resistance. Our results indicate that WD is a good easy-to-measure proxy for some traits related to drought resistance, but not others. The ability of hydraulic traits such as P50 and Ψtlp,x to predict mortality must be carefully examined if WD values are to be used to predict drought responses in species without detailed physiological measurements.


Subject(s)
Droughts , Trees , Panama , Plant Leaves , Water , Wood , Xylem
14.
Am J Bot ; 107(10): 1410-1422, 2020 10.
Article in English | MEDLINE | ID: mdl-33460035

ABSTRACT

PREMISE: Photosynthetic stems represent a source of extra carbon in plants from hot and dry environments, but little is known about how leaves and photosynthetic stems differ in terms of photosynthetic capacity, trait coordination, and responses to seasonal drought in subtropical systems. METHODS: We studied photosynthetic, hydraulic, morphometric (specific leaf area [SLA], wood density [WD]), and biochemical (C and N isotopes) traits in leaves and photosynthetic stems of 12 plant species from a sarcocaulescent scrub in the southern Baja California Peninsula, Mexico, in wet and dry seasons. RESULTS: Leaves and stems had similar mean photosynthetic capacity, as evaluated by chlorophyll fluorescence traits, indicating similar investment in leaf and stem photosynthesis. We did not find a relationship between stem hydraulic conductivity and leaf or stem photosynthetic traits. However, we found resource allocation trade-offs, between WD and both stem hydraulic conductivity and SLA. Leaf and stem photosynthetic traits did not change with season, but specific stem area was one of the few traits that changed the most between seasons-it increased during the dry season by as much as 154% indicating substantial water storage. CONCLUSIONS: Our results indicate the same proportional investment in photosynthetic capacity and dry matter in both leaves and photosynthetic stems across all 12 species. We identified multiple strategies at this seasonal site, with species ranging from high WD, low SLA, low hydraulic conductivity, and high specific bark area on one end of the spectrum and opposite traits on the other end.


Subject(s)
Photosynthesis , Plant Leaves , Mexico , Plant Stems , Trees , Water , Wood
16.
Tree Physiol ; 39(8): 1438-1445, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30938422

ABSTRACT

Morphological traits of the plant vascular system such as xylem vessel diameter have been implicated in many physiological processes including resistance to drought-induced xylem cavitation and vessel occlusion during infection with vascular wilt diseases. In both events, xylem vessels lose function because they become filled with air or tyloses and gels. Xylem cavitation has been well studied, whereas vessel occlusion remains purely descriptive even though it is a critical response to wounding injuries and compartmentalization of vascular pathogens. The timing of vessel occlusion is a key determinant to a successful compartmentalization of pathogens within the plant vascular system and we hypothesized that xylem vessel diameter is the driving variable. Using a dye injection method coupled with automated image analysis, we parameterized a model to investigate how xylem vessel diameter affects the speed of vessel occlusion in Vitis vinifera L. cv. Cabernet Sauvignon in response to wounding. Our dataset contains observations from 6,646 vessels at five kinetic points following stem pruning, over a time course of 1 week. Using this approach we provide evidence that the diameter of vessels is a key determinant of the timing of their occlusion. We discuss how these findings impact resistance to vascular wilt diseases in perennial woody hosts.


Subject(s)
Vitis , Water , Droughts , Plant Stems , Wood , Xylem
17.
Funct Plant Biol ; 46(2): 175-186, 2019 01.
Article in English | MEDLINE | ID: mdl-32172759

ABSTRACT

Woody plants with green photosynthetic stems are common in dry woodlands with the possible advantages of extra carbon gain, re-assimilation of CO2, and high water-use efficiency. However, their green stem tissue may also incur greater costs of water loss when stomata are closed. Our study focussed on evaluating the costs and benefits of having green stems in desert plants, addressing the water-use efficiency hypothesis. We measured water status, carbon and water exchange, and carbon, nitrogen and oxygen isotopic composition of 15 species in a desert wash scrub in Joshua Tree National Park, California, USA. We found that all woody species that have green stems relied on their green stems as the sole organ for carbon assimilation for most of the study period. Green stems had similar photosynthetic rate (Amax), stomatal conductance (gs) and intrinsic water-use efficiency (WUEi) to leaves of the same species. However, Amax, gs and cuticular conductance (gmin) were higher in green stems than in leaves of non-green stemmed species. Carbon isotopic composition (δ13C) was similar in both leaves and green stems, indicating no difference in integrated long-term WUE. Our results raise questions about the possible trade-off between carbon gain and water loss through the cuticle in green stems and how this may affect plant responses to current and future droughts.


Subject(s)
Photosynthesis , Plant Leaves , California , Cost-Benefit Analysis , Water
18.
Plant Cell Environ ; 41(11): 2617-2626, 2018 11.
Article in English | MEDLINE | ID: mdl-29904932

ABSTRACT

Isohydry (maintenance of plant water potential at the cost of carbon gain) and anisohydry (gas exchange maintenance at the cost of declining plant water status) make up two ends of a stomatal drought response strategy continuum. However, few studies have merged measures of stomatal regulation with xylem hydraulic safety strategies based on in situ field measurements. The goal of this study was to characterize the stomatal and xylem hydraulic safety strategies of woody species in the biodiverse Mediterranean-type ecosystem region of California. Measurements were conducted in situ when California was experiencing the most severe drought conditions in the past 1,200 years. We found coordination among stomatal, hydraulic, and standard leaf functional traits. For example, stem xylem vulnerability to cavitation (P50 ) was correlated with the water potential at stomatal closure (Pclose ); more resistant species had a more negative water potential at stomatal closure. The degree of isohydry-anisohydry, defined at Pclose -P50 , was correlated with the hydraulic safety margin across species; more isohydric species had a larger hydraulic safety margin. In addition, we report for the first time Pclose values below -10 MPa. Measuring these traits in a biodiverse region under exceptional drought conditions contributes to our understanding of plant drought responses.


Subject(s)
Plant Stems/physiology , Plant Stomata/physiology , Trees/physiology , Xylem/physiology , Dehydration , Droughts , Plant Leaves/physiology , Plant Transpiration/physiology , Water/metabolism
19.
New Phytol ; 218(3): 1015-1024, 2018 05.
Article in English | MEDLINE | ID: mdl-29457226

ABSTRACT

Predicting responses of tropical forests to climate change-type drought is challenging because of high species diversity. Detailed characterization of tropical tree hydraulic physiology is necessary to evaluate community drought vulnerability and improve model parameterization. Here, we measured xylem hydraulic conductivity (hydraulic efficiency), xylem vulnerability curves (hydraulic safety), sapwood pressure-volume curves (drought avoidance) and wood density on emergent branches of 14 common species of Eastern Amazonian canopy trees in Paracou, French Guiana across species with the densest and lightest wood in the plot. Our objectives were to evaluate relationships among hydraulic traits to identify strategies and test the ability of easy-to-measure traits as proxies for hard-to-measure hydraulic traits. Xylem efficiency was related to capacitance, sapwood water content and turgor loss point, and other drought avoidance traits, but not to xylem safety (P50 ). Wood density was correlated (r = -0.57 to -0.97) with sapwood pressure-volume traits, forming an axis of hydraulic strategy variation. In contrast to drier sites where hydraulic safety plays a greater role, tropical trees in this humid tropical site varied along an axis with low wood density, high xylem efficiency and high capacitance at one end of the spectrum, and high wood density and low turgor loss point at the other.


Subject(s)
Droughts , Quantitative Trait, Heritable , Rainforest , Trees/physiology , Water/physiology , French Guiana , Phylogeny , Pressure , Principal Component Analysis , Rain , Sample Size , Species Specificity , Wood/physiology , Xylem/physiology
20.
New Phytol ; 216(4): 1119-1129, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28833259

ABSTRACT

Coordination between stem photosynthesis and hydraulics in green-stemmed desert plants is important for understanding the physiology of stem photosynthesis and possible drought responses. Plants with photosynthetic stems have extra carbon gain that can help cope with the detrimental effects of drought. We studied photosynthetic, hydraulic and functional traits of 11 plant species with photosynthetic stems from three California desert locations. We compared relationships among traits between wet and dry seasons to test the effect of seasonality on these relationships. Finally, we compared stem trait relationships with analogous relationships in the leaf economics spectrum. We found that photosynthetic and hydraulic traits are coordinated in photosynthetic stems. The slope or intercept of all trait relationships was mediated by seasonality. The relationship between mass-based stem photosynthetic CO2 assimilation rate (Amass ) and specific stem area (SSA; stem surface area to dry mass ratio) was statistically indistinguishable from the leaf economics spectrum. Our results indicate that photosynthetic stems behave like leaves in the coordination of multiple traits related to carbon gain, water movement and water loss. Because of the similarity of the stem Amass -SSA relationship to the leaf Amass -specific leaf area relationship, we suggest the existence of a photosynthetic stem economic spectrum.


Subject(s)
Desert Climate , Magnoliopsida/metabolism , Photosynthesis , Plant Stems/metabolism , Water/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...