Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 7(6): e39352, 2012.
Article in English | MEDLINE | ID: mdl-22724002

ABSTRACT

The development of biological informatics infrastructure capable of supporting growing data management and analysis environments is an increasing need within the systematics biology community. Although significant progress has been made in recent years on developing new algorithms and tools for analyzing and visualizing large phylogenetic data and trees, implementation of these resources is often carried out by bioinformatics experts, using one-off scripts. Therefore, a gap exists in providing data management support for a large set of non-technical users. The TOLKIN project (Tree of Life Knowledge and Information Network) addresses this need by supporting capabilities to manage, integrate, and provide public access to molecular, morphological, and biocollections data and research outcomes through a collaborative, web application. This data management framework allows aggregation and import of sequences, underlying documentation about their source, including vouchers, tissues, and DNA extraction. It combines features of LIMS and workflow environments by supporting management at the level of individual observations, sequences, and specimens, as well as assembly and versioning of data sets used in phylogenetic inference. As a web application, the system provides multi-user support that obviates current practices of sharing data sets as files or spreadsheets via email.


Subject(s)
Computational Biology/methods , Management Information Systems , Algorithms , Cooperative Behavior , Internet , Research , Software
2.
PLoS One ; 7(3): e33816, 2012.
Article in English | MEDLINE | ID: mdl-22479451

ABSTRACT

Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host.


Subject(s)
Gene Silencing , Nicotiana/genetics , Retroelements/genetics , Chromatin/metabolism , DNA Methylation , Epigenesis, Genetic , Gene Expression Regulation , Gene Order , Histones/metabolism , Methyltransferases/metabolism , Promoter Regions, Genetic , Stress, Physiological/genetics , Nicotiana/metabolism , Transcription, Genetic
3.
J Mol Evol ; 68(3): 269-78, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19221683

ABSTRACT

Retrotransposons are a major component of eukaryote genomes, being especially abundant in plant genomes. They are frequently found inserted in gene-rich regions and have greatly contributed to the evolution of gene coding capacity and regulation. Retrotransposon insertions can influence the expression of neighboring genes in many ways, such as modifying their promoter or terminator sequences and altering their epigenetic control. Plant retrotransposons are highly regulated and their expression is usually associated with stress situations. While the control of transcription of some plant retrotransposons has been analyzed in some detail, little is known about the transcriptional termination of these elements. Here we show that the transcripts of the tobacco retrotransposon Tnt1 display a high variability of polyadenylation sites, only a fraction of them terminating at the major termination site. We also report on the ability of Tnt1 to extend its transcription into flanking genomic sequences and we analyze a particular case in which Tnt1 transcripts include sequences of an oppositely oriented resistance-like gene. The expression of this gene and the neighboring Tnt1 copy generate transcripts overlapping in more that 800 nucleotides, which could anneal and form dsRNAs and enter into silencing regulatory pathways. Resistance gene loci are usually composed of tandem arrays of resistance-like genes, a number of which contain mutations, including retrotransposon insertions, and are considered as to be pseudogenes. Given that plant retrotransposons are usually regulated by stress, the convergent expression of these resistance-like pseudogenes and the interleaving inducible retrotransposons may contribute to the control of plant responses to stress.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Nicotiana/genetics , Retroelements/genetics , Transcription, Genetic , Base Sequence , Green Fluorescent Proteins/genetics , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Regulatory Elements, Transcriptional/genetics , Regulatory Sequences, Nucleic Acid , Retroelements/physiology , Stress, Physiological/genetics , Terminal Repeat Sequences/genetics
4.
Nucleic Acids Res ; 34(18): 5238-46, 2006.
Article in English | MEDLINE | ID: mdl-17003053

ABSTRACT

MITEs (miniature inverted-repeated transposable elements) are a particular class of defective DNA transposons usually present within genomes as high copy number populations of highly homogeneous elements. Although an active MITE, the mPing element, has recently been characterized in rice, the transposition mechanism of MITEs remains unknown. It has been proposed that transposases of related transposons could mobilize MITEs in trans. Moreover, it has also been proposed that the presence of conserved terminal inverted-repeated (TIR) sequences could be the only requirement of MITEs for mobilization, allowing divergent or unrelated elements to be mobilized by a particular transposase. We present here evidence for a recent mobility of the Arabidopsis Emigrant MITE and we report on the capacity of the proteins encoded by the related Lemi1 transposon, a pogo-related element, to specifically bind Emigrant elements. This suggests that Lemi1 could mobilize Emigrant elements and makes the Lemi1/Emigrant couple an ideal system to study the transposition mechanism of MITEs. Our results show that Lemi1 proteins bind Emigrant TIRs but also bind cooperatively to subterminal repeated motifs. The requirement of internal sequences for the formation of proper DNA/protein structure could affect the capacity of divergent MITEs to be mobilized by distantly related transposases.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , DNA Transposable Elements , Transposases/metabolism , Arabidopsis/enzymology , Base Sequence , Binding Sites , DNA, Plant/chemistry , DNA, Plant/metabolism , Molecular Sequence Data , Protein Binding , Terminal Repeat Sequences
5.
Gene ; 311: 1-11, 2003 Jun 05.
Article in English | MEDLINE | ID: mdl-12853133

ABSTRACT

Transposons are genetic elements that can move, and sometimes spread, within genomes, and that constitute an important fraction of eukaryote genomes. Two types of transposons, long terminal repeat (LTR)-retrotransposons and miniature inverted-repeat transposable elements (MITEs), are highly represented in plant genomes, and can account for as much as 50-80% of the total DNA content. In the last few years it has been shown that, in spite of their mutagenic capacity, both LTR-retrotransposons and MITEs can be found associated to genes, suggesting that their activity has influenced the evolution of plant genes. In this review we will summarise recent data on the control of the activity and the impact of both LTR-retrotransposons and MITEs on the evolution of plant genes and genomes.


Subject(s)
DNA Transposable Elements/genetics , Long Interspersed Nucleotide Elements/genetics , Plants/genetics , Evolution, Molecular , Genes, Plant/genetics , Genome, Plant , Mutagenesis, Insertional
6.
Mol Biol Evol ; 19(12): 2285-93, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12446819

ABSTRACT

Miniature inverted-repeat transposable elements (MITEs) are structurally similar to defective class II elements, but their high copy number and the size and sequence conservation of most MITE families suggest that they can be amplified by a replicative mechanism. Here we present a genome-wide analysis of the Emigrant family of MITEs from Arabidopsis thaliana. In order to be able to detect divergent ancient copies, and low copy number subfamilies with a different internal sequence we have developed a computer program to look for Emigrant elements based solely on the terminal inverted-repeat sequence. We have detected 151 Emigrant elements of different subfamilies. Our results show that different bursts of amplification, probably of few active, or master, elements, have occurred at different times during Arabidopsis evolution. The analysis of the insertion sites of the Emigrant elements shows that recently inserted Emigrant elements tend to be located far from open reading frames, whereas more ancient Emigrant subfamilies are preferentially found associated to genes.


Subject(s)
Arabidopsis/genetics , DNA Transposable Elements/genetics , Genome, Plant , Amino Acid Sequence , Base Sequence , DNA, Plant , Molecular Sequence Data , Open Reading Frames , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...