Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 19(33): 22395-22400, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28805860

ABSTRACT

We report a facile, fast, and one-step approach to prepare N-doped graphene quantum dots (GQDs) using pulsed laser ablation with diethylenetriamine (DETA). The synthesized N-doped GQDs with an average size of about 3.4 nm and an N/C atomic ratio of 26% have been demonstrated. Compared to pristine GQDs, the N-doped GQDs emit enhanced photoluminescence (PL) with a factor as high as 66, originated from the enhanced densities of pyridinic and graphitic N. The temperature-dependent PL of the N-doped GQDs was studied from cryogenic to room temperature. An anomalous temperature dependence of PL intensity was observed for the N-doped GQDs, which was ascribed to a carrier transfer mechanism from a dopant-induced state to the quantum-dot emitting state.

2.
Phys Chem Chem Phys ; 18(32): 22599-605, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27476476

ABSTRACT

A one-step synthesis of graphene quantum dots (GQDs) has been implemented using pulsed laser ablation (PLA) with carboxyl-functionalized multiwalled carbon nanotubes (MWCNTs). The synthesized GQDs with an average size smaller than 3 nm were obtained by the fragmentation of MWCNTs via oxidative cutting. The GQDs can generate tunable photoluminescence (PL) ranging from green to blue by controlling the PLA time. The PL spectrum (decay time) of the green GQDs remains unchanged under different excitation energies (emission energies), while that of the blue GQDs correlates with the excitation energy (emission energy). On the basis of the pH and temperature dependence of PL, we suggest that the localized intrinsic states associated with the sp(2) nanodomains and delocalized extrinsic states embedded on the GQD surface are responsible for blue and green emission in GQDs, respectively.

3.
Sci Rep ; 6: 23260, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987403

ABSTRACT

We demonstrate a new doping scheme where photo-induced carriers from graphene quantum dots (GQDs) can be injected into GaN and greatly enhance photoluminescence (PL) in GaN epilayers. An 8.3-fold enhancement of PL in GaN is observed after the doping. On the basis of time-resolved PL studies, the PL enhancement is attributed to the carrier transfer from GQDs to GaN. Such a carrier transfer process is caused by the work function difference between GQDs and GaN, which is verified by Kelvin probe measurements. We have also observed that photocurrent in GaN can be enhanced by 23-fold due to photo-induced doping with GQDs. The improved optical and transport properties from photo-induced doping are promising for applications in GaN-based optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...