Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Malar J ; 16(1): 261, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28666481

ABSTRACT

BACKGROUND: The Plasmodium vivax multidrug resistant 1 gene (pvmdr1) codes for a transmembrane protein of the parasite's digestive vacuole. It is likely that the pvmdr1 gene mutations occur at different sites by convergent evolution. In here, the genetic variation of pvmdr1 at three sites of the Mesoamerican region was studied. Since 1950s, malarious patients of those areas have been treated only with chloroquine and primaquine. METHODS: Blood samples from patients infected with P. vivax were obtained in southern Mexico (SMX), in the Northwest (NIC-NW) and in the northeast (NIC-NE) of Nicaragua. Genomic DNA was obtained and fragments of pvmdr1 were amplified and sequenced. The nucleotide and amino acid changes as well as the haplotype frequency in pvmdr1 were determined per strain and per geographic site. The sequences of pvmdr1 obtained from the studied regions were compared with homologous sequences from the GenBank database to explore the P. vivax genetic structure. RESULTS: In 141 parasites, eight nucleotide changes (two changes were synonymous and other six were nonsynonymous) were detected in 1536 bp. The PvMDR1 amino acid changes Y976F, F1076FL were predominant in endemic parasites from NIC-NE and outbreak parasites in NIC-NW but absent in SMX. Thirteen haplotypes were resolved, and found to be closely related, but their frequency at each geographic site was different (P = 0.0001). The pvmdr1 codons 925-1083 gene fragment showed higher genetic and haplotype diversity in parasites from NIC-NE than the other areas outside Latin America. The haplotype networks suggested local diversification of pvmdr1 and no significant departure from neutrality. The F ST values were low to moderate regionally, but high between NIC-NE or NIC-NW and other regions inside and outside Latin America. CONCLUSIONS: The pvmdr1 gene might have diversified recently at regional level. In the absence of significant natural, genetic drift might have caused differential pvmdr1 haplotype frequencies at different geographic sites in Mesoamerica. A very recent expansion of divergent pvmdr1 haplotypes in NIC-NE/NIC-NW produced high differentiation between these and parasites from other sites including SMX. These data are useful to set a baseline for epidemiological surveillance.


Subject(s)
Multidrug Resistance-Associated Proteins/genetics , Plasmodium vivax/genetics , Polymorphism, Genetic , Protozoan Proteins/genetics , Selection, Genetic , Haplotypes , Mexico , Multidrug Resistance-Associated Proteins/metabolism , Nicaragua , Protozoan Proteins/metabolism
2.
Parasit Vectors ; 10(1): 217, 2017 May 02.
Article in English | MEDLINE | ID: mdl-28464959

ABSTRACT

BACKGROUND: Mexico advanced to the pre-elimination phase in 2009 due to a significant reduction in malaria cases, and since 2000, Plasmodium vivax is the only species transmitted. During the last two decades, malaria transmission has been mostly local and isolated to a few regions. It is important to gain further insights into the impact of control measures on the parasite population structure. Hence, the aim of the current study was to determine detailed changes in P. vivax genetic diversity and population structure based on analysing the gene that encodes the apical membrane antigen 1 (pvama1). This analysis covered from control to pre-elimination (1993-2011) in a hypo-endemic region in southern Mexico. RESULTS: The 213 pvama1 I-II sequences presently analysed were grouped into six periods of three years each. They showed low genetic diversity, with 15 haplotypes resolved. Among the DNA sequences, there was a gradual decrease in genetic diversity, the number of mixed genotype infections and the intensity of positive selection, in agreement with the parallel decline in malaria cases. At the same time, linkage disequilibrium (R2) increased. The three-dimensional haplotype network revealed that pvama1 I-II haplotypes were separated by 1-11 mutational steps, and between one another by 0-3 unsampled haplotypes. In the temporal network, seven haplotypes were detected in at least two of the six-time layers, and only four distinct haplotypes were evidenced in the pre-elimination phase. Structure analysis indicated that three subpopulations fluctuated over time. Only 8.5% of the samples had mixed ancestry. In the pre-elimination phase, subpopulation P1 was drastically reduced, and the admixture was absent. CONCLUSIONS: The results suggest that P. vivax in southern Mexico evolved based on local adaptation into three "pseudoclonal" subpopulations that diversified at the regional level and persisted over time, although with varying frequency. Control measures and climate events influenced the number of malaria cases and the genetic structure. The sharp decrease in parasite diversity and other related genetic parameters during the pre-elimination phase suggests that malaria elimination is possible in the near future. These results are useful for epidemiological surveillance.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Malaria, Vivax/transmission , Membrane Proteins/genetics , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Alleles , DNA, Protozoan/genetics , Evolution, Molecular , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Malaria, Vivax/parasitology , Mexico , Sequence Analysis, DNA , Time Factors
3.
Parasit Vectors ; 8: 651, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26691669

ABSTRACT

BACKGROUND: Reported malaria cases in the Americas had been reduced to about one-half million by 2012. To advance towards elimination of this disease, it is necessary to gain insights into how the malaria parasite is evolving, including the emergence, spread and persistence of new haplotypes in affected regions. In here, the genetic diversity of the three major P. vivax merozoite genes was analyzed. METHODS: From P. vivax-infected blood samples obtained in southern Mexico (SMX) during 2006-2007, nucleotide sequences were achieved for: the 42 kDa carboxyl fragment of the merozoite surface protein-1 (msp1 42 ), domains I-II of the apical membrane antigen-1 (ama1 I-II ), and domain II of the Duffy binding protein (dbp II ). Gene polymorphism was examined and haplotype networks were developed to depict parasite relationships in SMX. Then genetic diversity, recombination and natural selection were analyzed and the degree of differentiation was determined as FST values. RESULTS: The diversity of P. vivax merozoite genes in SMX was less than that of parasites from other geographic origins, with dbp II < ama1 I-II < msp1 42 . Ama1 I-II and msp1 42 exposed the more numerous haplotypes exclusive to SMX. While, all dbp II haplotypes from SMX were separated from one to three mutational steps, the networks of ama1 I-II and msp1 42 were more complex; loops and numerous mutational steps were evidenced, likely due to recombination. Sings of local diversification were more evident for msp1 42 . Sixteen combined haplotypes were determined; one of these haplotypes not detected in 2006 was highly frequent in 2007. The Rm value was higher for msp1 42 than for ama1 I-II, being insignificant for dbp II . The dN-dS value was highly significant for ama1 I-II and lesser so for dbp II . The F ST values were higher for dbp II than msp1 42 , and very low for ama1 I-II . CONCLUSIONS: In SMX, P. vivax ama1 I-II , dbp II and msp1 42 demonstrated limited diversity, and exhibited a differentiated parasite population. The results suggest that differential intensities of selective forces are operating on these gene fragments, and probably related to their timing, length of exposure and function during reticulocyte adhesion and invasion. Therefore, these finding are essential for mono and multivalent vaccine development and for epidemiological surveillance.


Subject(s)
Antigens, Protozoan/genetics , Genetic Variation , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Merozoites/classification , Plasmodium vivax/classification , Protozoan Proteins/genetics , Receptors, Cell Surface/genetics , Reticulocytes/parasitology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Haplotypes , Mexico , Molecular Sequence Data , Plasmodium vivax/genetics , Sequence Analysis, DNA
4.
Malar J ; 14: 426, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26518132

ABSTRACT

BACKGROUND: In Mexico, combined chloroquine (CQ) and primaquine (PQ) treatment has been used since the late 1950s to treat Plasmodium vivax infections. Although malaria transmission has declined, current treatment strategies must be evaluated to advance towards malaria elimination. METHODS: The clinical and parasitological outcome of treating symptomatic P. vivax with the 14-day (T14) treatment or intermittent single dose (ISD) regimen was evaluated in southern Mexico between February 2008 and September 2010. Patients over 12 months old with P. vivax mono-infection and asexual parasitaemia ≥500 parasites/µl were treated under supervision. After diagnosis (day 0), treatment began immediately. T14 patients received CQ for 3 days (10, 10 and 5 mg/kg) and PQ daily for 14 days (0.25 mg/kg), while ISD patients received a single dose of CQ (10 mg/kg) and PQ (0.75 mg/kg) on days 0, 30, 60, 180, 210, and 240. Follow-up was done by observing clinical and laboratory (by microscopy, serology and PCR) outcome, considering two endpoints: primary blood infection clearance and clinical response at ~28 days, and the incidence of recurrent blood infection during 12 months. Parasite genotypes of primary/recurrent blood infections were analysed. RESULTS: During the first 28 days, no differences in parasite clearance or clinical outcome were observed between T14 (86 patients) and ISD (67 patients). On day 3, 95 % of patients in both groups showed no blood parasites, and no recurrences were detected on days 7-28. Contrarily, the therapeutic effectiveness (absence of recurrent parasitaemia) was distinct for T14 versus ISD at 12 months: 83.7 versus 50 %, respectively (p = 0.000). Symptomatic and asymptomatic infections were recorded on days 31-352. Some parasite recurrences were detected by PCR and/or serological testing. CONCLUSIONS: T14 was effective for opportune elimination of the primary blood infection and preventing relapse episodes. The first single dose of CQ-PQ eliminated primary blood infection as efficiently as the initial three-dose scheme of T14, but the ISD regimen should be abandoned. A single combined dose administered to symptomatic patients in remote areas while awaiting parasitological diagnosis may contribute to halting P. vivax transmission. Alternatives for meeting the challenge of T14 supervision are discussed. TRIAL REGISTRATION: NIH-USA, ClinicalTrial.gov Identifier: NCT02394197.


Subject(s)
Antimalarials/administration & dosage , Chloroquine/administration & dosage , Malaria, Vivax/drug therapy , Primaquine/administration & dosage , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Diagnostic Tests, Routine , Drug Therapy, Combination/methods , Female , Genotype , Humans , Infant , Malaria, Vivax/parasitology , Malaria, Vivax/pathology , Male , Mexico , Middle Aged , Plasmodium vivax/classification , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Recurrence , Treatment Outcome , Young Adult
5.
Malar J ; 12: 243, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23855807

ABSTRACT

BACKGROUND: The origins and dispersal of Plasmodium vivax to its current worldwide distribution remains controversial. Although progress on P. vivax genetics and genomics has been achieved worldwide, information concerning New World parasites remains fragmented and largely incomplete. More information on the genetic diversity in Latin America (LA) is needed to better explain current patterns of parasite dispersion and evolution. METHODS: Plasmodium vivax circumsporozoite protein gene polymorphism was investigated using polymerase chain reaction amplification and restriction fragment length polymorphism (PCR-RFLP), and Sanger sequencing in isolates from the Pacific Ocean coast of Mexico, Nicaragua, and Peru. In conjunction with worldwide sequences retrieved from the Genbank, mismatch distribution analysis of central repeat region (CRR), frequency estimation of unique repeat types and phylogenetic analysis of the 3' terminal region, were performed to obtain an integrative view of the genetic relationships between regional and worldwide isolates. RESULTS: Four RFLP subtypes, vk210a, b, c and d were identified in Southern Mexico and three subtypes vk210a, e and f in Nicaragua. The nucleotide sequences showed that Mexican vk210a and all Nicaraguan isolates were similar to other American parasites. In contrast, vk210b, c and d were less frequent, had a domain ANKKAEDA in their carboxyl end and clustered with Asian isolates. All vk247 isolates from Mexico and Peru had identical RFLP pattern. Their nucleotide sequences showed two copies of GGQAAGGNAANKKAGDAGA at the carboxyl end. Differences in mismatch distribution parameters of the CRR separate vk247 from most vk210 isolates. While vk247 isolates display a homogeneous pattern with no geographical clustering, vk210 isolates display a heterogeneous geographically clustered pattern which clearly separates LA from non-American isolates, except vk210b, c and d from Southern Mexico. CONCLUSIONS: The presence of vk210a in Mexico and vk210e, f and g in Nicaragua are consistent with other previously reported LA isolates and reflect their circulation throughout the continent. The vk210b, c and d are novel genotypes in LA. Their genetic relationships and low variability within these vk210 and/or within the vk247 parasites in Southern Mexico suggest its recent introduction and/or recent expansion to this region. The global analysis of P. vivax csp suggests this parasite introduction to the region and likely LA by different independent events.


Subject(s)
Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium vivax/classification , Plasmodium vivax/genetics , Protozoan Proteins/genetics , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Genotype , Humans , Mexico/epidemiology , Molecular Epidemiology , Molecular Sequence Data , Nicaragua/epidemiology , Peru/epidemiology , Plasmodium vivax/isolation & purification , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Sequence Homology
6.
Parasit Vectors ; 6: 109, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23597046

ABSTRACT

BACKGROUND: In southern Mexico, malaria transmission is low, seasonal, and persistent. Because many patients are affected by two or more malaria episodes caused by Plasmodium vivax, we carried out a study to determine the timing, frequency, and genetic identity of recurrent malaria episodes in the region between 1998 and 2008. METHODS: Symptomatic patients with more than one P. vivax infection were followed up, and blood samples were collected from primary and recurrent infections. DNA extracted from infected blood samples was analyzed for restriction fragment length polymorphism (RFLP) in genes encoding csp and msp3α, as well as size variation in seven microsatellites. RESULTS: One hundred and forty six parasite samples were collected from 70 patients; of these, 65 patients had one recurrent infection, four had two, and one had three recurrent infections. The majority of recurrent infections occurred within one year of the primary infection, some of which were genetically homologous to the primary infection. As the genetic diversity in the background population was high, the probability of homologous re-infection was low and the homologous recurrences likely reflected relapses. These homologous recurrent infections generally had short (< 6 months) or long (6-12 months) intervals between the primary (PI) and recurrent (RI) infections; whereas infections containing heterologous genotypes had relatively longer intervals. The epidemiological data indicate that heterologous recurrences could be either relapse or re-infections. CONCLUSIONS: Genetic and temporal analysis of P. vivax recurrence patterns in southern Mexico indicated that relapses play an important role in initiating malaria transmission each season. The manifestation of these infections during the active transmission season allowed the propagation of diverse hypnozoite genotypes. Both short- and long-interval relapses have contributed to parasite persistence and must be considered as targets of treatment for malaria elimination programs in the region to be successful.


Subject(s)
Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Plasmodium vivax/classification , Plasmodium vivax/genetics , Adolescent , Adult , Aged , Animals , Blood/parasitology , Child , DNA Fingerprinting , DNA, Protozoan/genetics , DNA, Protozoan/isolation & purification , Female , Genotype , Humans , Male , Mexico/epidemiology , Microsatellite Repeats , Middle Aged , Molecular Epidemiology , Plasmodium vivax/isolation & purification , Polymorphism, Restriction Fragment Length , Recurrence , Young Adult
7.
J Med Entomol ; 40(3): 371-4, 2003 May.
Article in English | MEDLINE | ID: mdl-12943119

ABSTRACT

Bacterial infections were investigated in midguts of insectary and field-collected Anopheles albimanus Weidemann from southern Mexico. Serratia marcescens, Enterobacter cloacae and Enterobacter amnigenus 2, Enterobacter sp., and Serratia sp. were isolated in field samples obtained in 1998, but only Enterobacter sp. was recovered in field samples of 1997 and no bacteria were isolated from insectary specimens. These bacteria were offered along with Plasmodium vivax infected blood to aseptic insectary An. albimanus, and the number of infected mosquitoes as well as the oocyst densities assessed after 7d. Plasmodium vivax infections in mosquitoes co-infected with En. amnigenus 2, En. cloacae, and S. marcensces were 53, 17, and 210 times, respectively, lower than in control mosquitoes, and the mean oocyst density in mosquitoes co-infected with En. cloacae was 2.5 times lower than in controls. Mortality was 13 times higher in S. marcensces-infected mosquitoes compared with controls. The overall midgut bacterial infection in mosquito field populations may influence P. vivax transmission, and could contribute to explain the annual variations in malaria incidence observed in the area.


Subject(s)
Anopheles/microbiology , Anopheles/parasitology , Digestive System/microbiology , Enterobacter/isolation & purification , Plasmodium vivax/pathogenicity , Serratia/isolation & purification , Animals , Enterobacter cloacae/isolation & purification , Plasmodium vivax/growth & development , Serratia marcescens/isolation & purification , Spores
SELECTION OF CITATIONS
SEARCH DETAIL
...