Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 13770, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30214049

ABSTRACT

Fluorescence microscopy in the second near-infrared optical window (NIR-II, 1000-1350 nm) has become a technique of choice for non-invasive in vivo imaging. The deep penetration of NIR light in living tissue, as well as negligible tissue autofluorescence within this optical range, offers increased resolution and contrast with even greater penetration depths. Here, we present a custom-built spinning-disc confocal laser microscope (SDCLM) that is specific to imaging in the NIR-II. The SDCLM achieves a lateral resolution of 0.5 ± 0.1 µm and an axial resolution of 0.6 ± 0.1 µm, showing a ~17% and ~45% enhancement in lateral and axial resolution, respectively, compared to the corresponding wide-field configuration. We furthermore showcase several applications that demonstrate the use of the SDCLM for in situ, spatiotemporal tracking of NIR particles and bioanalytes within both synthetic and biological systems.

2.
Nat Commun ; 5: 4249, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24963757

ABSTRACT

Controlling and manipulating the polarization state of a light beam is crucial in applications ranging from optical sensing to optical communications, both in the classical and quantum regime, and ultimately whenever interference phenomena are to be exploited. In addition, many of these applications present severe requirements of phase stability and greatly benefit from a monolithic integrated-optics approach. However, integrated devices that allow arbitrary transformations of the polarization state are very difficult to produce with conventional lithographic technologies. Here we demonstrate waveguide-based optical waveplates, with arbitrarily rotated birefringence axis, fabricated by femtosecond laser pulses. To validate our approach, we exploit this component to realize a compact device for the quantum state tomography of two polarization-entangled photons. This work opens perspectives for integrated manipulation of polarization-encoded information with relevant applications ranging from integrated polarimetric sensing to quantum key distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...