Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(36): 18142-18147, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31420515

ABSTRACT

One of the most challenging tasks in modern science is the development of systems biology models: Existing models are often very complex but generally have low predictive performance. The construction of high-fidelity models will require hundreds/thousands of cycles of model improvement, yet few current systems biology research studies complete even a single cycle. We combined multiple software tools with integrated laboratory robotics to execute three cycles of model improvement of the prototypical eukaryotic cellular transformation, the yeast (Saccharomyces cerevisiae) diauxic shift. In the first cycle, a model outperforming the best previous diauxic shift model was developed using bioinformatic and systems biology tools. In the second cycle, the model was further improved using automatically planned experiments. In the third cycle, hypothesis-led experiments improved the model to a greater extent than achieved using high-throughput experiments. All of the experiments were formalized and communicated to a cloud laboratory automation system (Eve) for automatic execution, and the results stored on the semantic web for reuse. The final model adds a substantial amount of knowledge about the yeast diauxic shift: 92 genes (+45%), and 1,048 interactions (+147%). This knowledge is also relevant to understanding cancer, the immune system, and aging. We conclude that systems biology software tools can be combined and integrated with laboratory robots in closed-loop cycles.


Subject(s)
Computational Biology , Gene Expression Regulation, Fungal , Robotics , Saccharomyces cerevisiae , Software , Systems Biology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
2.
Opt Express ; 25(21): 25719-25724, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29041236

ABSTRACT

We demonstrate a single polarization monolithically integrated coherent receiver on an InP substrate with a SOA preamplifier, a 90° optical hybrid, and four 40 GHz UTC photodiodes. Record performances with responsivity above 4 A/W with low imbalance <1 dB and error free detection of 32 Gbaud QPSK signals were simultaneously demonstrated.

3.
BMC Bioinformatics ; 13: 233, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22974051

ABSTRACT

BACKGROUND: Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. RESULTS: When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. CONCLUSIONS: We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP.


Subject(s)
Protein Conformation , Proteins/chemistry , Proteins/classification , Sequence Alignment , Sequence Analysis, Protein/methods , Software , Algorithms , Cluster Analysis , Protein Structure, Tertiary
4.
J Phys Chem B ; 113(19): 6881-93, 2009 May 14.
Article in English | MEDLINE | ID: mdl-19374420

ABSTRACT

Determination of DNA solution structure is a difficult task even with the high-sensitivity method used here based on simulated annealing with 35 restraints/residue (Cryoprobe 750 MHz NMR). The conformations of both the phosphodiester linkages and the dinucleotide segment encompassing the sharp turn in single-stranded DNA are often underdetermined. To obtain higher quality structures of a DNA GNRA loop, 5'-d(GCGAAAGC)-3', we have used a mesoscopic molecular modeling approach, called Biopolymer Chain Elasticity (BCE), to provide reference conformations. By construction, these models are the least deformed hairpin loop conformation derived from canonical B-DNA at the nucleotide level. We have further explored this molecular conformation at the torsion angle level with AMBER molecular mechanics using different possible (epsilon,zeta) constraints to interpret the 31P NMR data. This combined approach yields a more accurate molecular conformation, compatible with all the NMR data, than each method taken separately, NMR/DYANA or BCE/AMBER. In agreement with the principle of minimal deformation of the backbone, the hairpin motif is stabilized by maximal base-stacking interactions on both the 5'- and 3'-sides and by a sheared G.A mismatch base pair between the first and last loop nucleotides. The sharp turn is located between the third and fourth loop nucleotides, and only two torsion angles beta6 and gamma6 deviate strongly with respect to canonical B-DNA structure. Two other torsion angle pairs epsilon3,zeta3 and epsilon5,zeta5 exhibit the newly recognized stable conformation BIIzeta+ (-70 degrees, 140 degrees). This combined approach has proven to be useful for the interpretation of an unusual 31P chemical shift in the 5'-d(GCGAAAGC)-3' hairpin.


Subject(s)
DNA/chemistry , DNA/genetics , Models, Molecular , Nucleic Acid Conformation , Base Sequence , Nuclear Magnetic Resonance, Biomolecular , Solutions
5.
J Phys Chem B ; 111(31): 9400-9, 2007 Aug 09.
Article in English | MEDLINE | ID: mdl-17625827

ABSTRACT

UV irradiation at 254 nm of 2'-O,5-dimethyluridylyl(3'-5')-2'-O,5-dimethyluridine (1a) and of natural thymidylyl(3'-5')thymidine (1b) generates the same photoproducts (CPD and (6-4)PP; responsible for cell death and skin cancer). The ratios of quantum yields of photoproducts obtained from 1a (determined herein) to that from 1b are in a proportion close to the approximately threefold increase of stacked dinucleotides for 1a compared with those of 1b (from previous circular dichroism results). 1a and 1b however are endowed with different predominant sugar conformations, C3'-endo (1a) and C2'-endo (1b). The present investigation of the stacked conformation of these molecules, by unrestrained state-of-the-art molecular simulation in explicit solvent and salt, resolves this apparent paradox and suggests the following main conclusions. Stacked dinucleotides 1a and 1b adopt the main characteristic features of a single-stranded A and B form, respectively, where the relative positions of the backbone and the bases are very different. Unexpectedly, the geometry of the stacking of two thymine bases, within each dinucleotide, is very similar and is in excellent agreement with photochemical and circular dichroism results. Analyses of molecular dynamics trajectories with conformational adiabatic mapping show that 1a and 1b explore two different regions of conformational space and possess very different flexibilities. Therefore, even though their base stacking is very similar, these molecules possess different geometrical, mechanical, and dynamical properties that may account for the discrepancy observed between increased stacking and increased photoproduct formations. The computed average stacked conformations of 1a and 1b are well-defined and could serve as starting models to investigate photochemical reactions with quantum dynamics simulations.


Subject(s)
Dinucleoside Phosphates/chemistry , Thymidine/chemistry , Chromatography, High Pressure Liquid , Computer Simulation , Kinetics , Magnetic Resonance Spectroscopy , Methylation , Models, Molecular , Molecular Structure , Photochemistry , Photolysis , Pliability
6.
Article in English | MEDLINE | ID: mdl-16530466

ABSTRACT

Successive investigations over the last decade have revealed and confirmed a stable loop closure in a family of d-[GTAC-5Pur6N7N-GTAC] hairpins, where 5Pur6N7N is a AAA, GAG and AXC loop (X being any nucleotide). The trinucleotide loop is characterized by a well defined 5Pur-7N mispairing mode, and by upfield chemical shifts for three sugar protons of the apical nucleotide 6N. The GTTC-ACA-GAAC DNA hairpin, of interest for its likely involvement in Vibrio cholerae genome mutations, has now been investigated. The GTAC-ACA-GTAC DNA hairpin has also been studied because it is intermediate between the other structures, as it contains the loop of the hairpin under consideration and the stem of the above family. The two hairpins with the ACA loop are stable. They show the same mispairing mode and similar upfield shifts as the previous family, but GTTC-ACA-GAAC seems to be slightly less compact than any other. GTTC-ACA-GAAC is remarkable in that it exhibits a B(II) character for the phosphate-ester conformation at 8Gp9A, together with a swing of the upper hairpin into the major groove that, in particular, brings 6CH1' roughly as close to 7AH2 as to 6CH6. These unexpected structural features are qualitatively deduced from (1)H and (31)P NMR spectra, and confirmed by Raman spectroscopy. This comparative study shows that not only the loop sequence but also the stem sequence may control hairpin structures.


Subject(s)
Base Pairing , DNA/chemistry , Nucleic Acid Conformation , Oligodeoxyribonucleotides/chemistry , Spectrum Analysis , Magnetic Resonance Spectroscopy , Molecular Structure , Nucleic Acid Denaturation , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
7.
Nucleic Acids Res ; 31(3): 1086-96, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12560507

ABSTRACT

The biopolymer chain elasticity (BCE) approach and the new molecular modelling methodology presented previously are used to predict the tri- dimensional backbones of DNA and RNA hairpin loops. The structures of eight remarkably stable DNA or RNA hairpin molecules closed by a mispair, recently determined in solution by NMR and deposited in the PDB, are shown to verify the predicted trajectories by an analysis automated for large numbers of PDB conformations. They encompass: one DNA tetraloop, -GTTA-; three DNA triloops, -AAA- or -GCA-; and four RNA tetraloops, -UUCG-. Folding generates no distortions and bond lengths and bond angles of main atoms of the sugar-phosphate backbone are well restored upon energy refinement. Three different methods (superpositions, distance of main chain atoms to the elastic line and RMSd) are used to show a very good agreement between the trajectories of sugar-phosphate backbones and between entire molecules of theoretical models and of PDB conformations. The geometry of end conditions imposed by the stem is sufficient to dictate the different characteristic DNA or RNA folding shapes. The reduced angular space, consisting of the new parameter, angle Omega, together with the chi angle offers a simple, coherent and quantitative description of hairpin loops.


Subject(s)
Biopolymers/chemistry , DNA/chemistry , Models, Molecular , RNA/chemistry , Base Pair Mismatch , Base Sequence , Databases, Protein , Elasticity , Models, Theoretical , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Nucleotides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...