Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 13(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322480

ABSTRACT

Background: The aim of this study was to investigate cuspal deflection caused by material shrinkage and temperature rise occurring in the pulp chamber during photopolymerization. The aim of this study was also to investigate the effect of flowable and packable bulk-fill composites on cuspal deflection occurring in mesio-occlusal-distal (MOD) cavities restored through the bulk-fill or through the incremental layering technique. Additionally, mechanical and thermal properties of bulk-fill composites were considered. Methods: Two bulk-fill composites (high-viscosity and low-viscosity), largely differing in material composition, were used. These composites were characterized through linear shrinkage and compressive test. Cuspal deformation during restoration of mesio-occlusal-distal cavities of human premolars was evaluated using both the bulk-fill and the incremental layering techniques. Temperature rise was measured through thermocouples placed 1 mm below the cavity floor. Results: Shrinkage of the flowable composite was significantly higher (p < 0.05) than that of packable composite, while mechanical properties were significantly lower (p < 0.05). For cusp distance variation, no significant difference was observed in cavities restored through both restorative techniques, while temperature rise values spanned from 8.2 °C to 11.9 °C. Conclusions: No significant difference in cusp deflection between the two composites was observed according to both the restorative techniques. This result can be ascribed to the Young's modulus suggesting that the packable composite is stiffer, while the flowable composite is more compliant, thus balancing the cusp distance variation. The light curing modality of 1000 mW/cm2 for 20 s can be considered thermally safe for the pulp chamber.

2.
Materials (Basel) ; 11(2)2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29466299

ABSTRACT

Experimental/theoretical analyses have already been performed on poly(ε-caprolactone) (PCL) loaded with organic-inorganic fillers (PCL/TiO2 and PCL/ZrO2) to find a correlation between the results from the small punch test and Young's modulus of the materials. PCL loaded with Ti2 (PCL = 12, TiO2 = 88 wt %) and Zr2 (PCL = 12, ZrO2 = 88 wt %) hybrid fillers showed better performances than those obtained for the other particle composition. In this context, the aim of current research is to provide further insight into the mechanical properties of PCL loaded with sol-gel-synthesized organic-inorganic hybrid fillers for bone tissue engineering. For this reason, theoretical analyses were performed by the finite element method. The results from the small punch test and Young's modulus of the materials were newly correlated. The obtained values of Young's modulus (193 MPa for PCL, 378 MPa for PCL/Ti2 and 415 MPa for PCL/Zr2) were higher than those obtained from a previous theoretical modelling (144 MPa for PCL, 282 MPa for PCL/Ti2 and 310 MPa for PCL/Zr2). This correlation will be an important step for the evaluation of Young's modulus, starting from the small punch test data.

3.
Open Dent J ; 8: 229-35, 2014.
Article in English | MEDLINE | ID: mdl-25614768

ABSTRACT

OBJECTIVES: To evaluate temperature profiles developing in the root during warm compaction of gutta-percha with the heat sources System B and System MB Obtura (Analityc Technology, Redmond, WA, USA). Thirty extracted human incisor teeth were used. Root canals were cleaned and shaped by means of Protaper rotary files (Dentsply-Maillefer, Belgium), and imaging was performed by micro-CT (Skyscan 1072, Aartselaar, Belgium). METHODS: Teeth were instrumented with K-type thermocouples, and the roots were filled with thermoplastic gutta-percha. Vertical compaction was achieved through the heat sources System B and System MB, and temperature profiles were detect-ed by means of NI Dac Interface controlled by the LabView System. With both heat sources, higher temperature levels were recorded in the region of the root far from the apex. When the warm plugger tip was positioned at a distance of 3 mm from the root apex, temperature levels of about 180°C were used to soften gutta-percha, and no statistically significant differences were observed between peak temperatures developed by the two heating sources at the root apex. However, a temperature level higher than 40°C was maintained for a longer time with System MB. RESULTS: Statistically significant differences were observed in peak temperature levels recorded far from the root apex. Thus, with a temperature of about 180°C and the warm plugger positioned at 3 mm from the root apex, both heating sources led to a temperature slightly higher than 40°C at the apex of the root, suggesting that the gutta-percha was properly softened. SIGNIFICANCE: A temperature level higher than 40°C was maintained for a longer time with System MB, thus providing an ad-equate time for warm compaction of the gutta-percha.

SELECTION OF CITATIONS
SEARCH DETAIL
...