Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
ACS Appl Energy Mater ; 7(10): 4504-4512, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817850

ABSTRACT

In this study, we present a comprehensive analysis of the thermoelectric (TE) properties of highly c-axis-oriented thin films of layered misfit cobaltates Bi2Sr2Co2Oy. The films exhibit a high c-axis orientation, facilitating precise measurements of electronic transport and TE properties along the a-b crystallographic plane. Our findings reveal that the presence of nearly stoichiometric oxygen content results in high thermopower with metallic conductivity, while the annealing of the films in a reduced oxygen atmosphere eliminates their metallic behavior. According to the well-established Heike's limit, the thermopower tends to become temperature independent when the thermal energy significantly exceeds the bandwidth, which provides a rough estimation of charge carrier density by using the Heike's formula. This observation suggests that the dominant contribution to the thermopower comes from the narrow Co-t2g bands near the Fermi energy. Our study demonstrates that the calculated thermopower value using Heike's formula, based on the Hall electron density of the Bi2Sr2Co2Oy thin films at 300 K, aligns well with the experimental results, shedding light on the intriguing TE properties of this family of layered cobaltate oxide films.

2.
Adv Mater ; 36(27): e2310198, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38546029

ABSTRACT

Complex oxides offer a wide range of functional properties, and recent advances in the fabrication of freestanding membranes of these oxides are adding new mechanical degrees of freedom to this already rich functional ecosystem. Here, photoactuation is demonstrated in freestanding thin film resonators of ferroelectric Barium Titanate (BaTiO3) and paraelectric Strontium Titanate (SrTiO3). The free-standing films, transferred onto perforated supports, act as nano-drums, oscillating at their natural resonance frequency when illuminated by a frequency-modulated laser. The light-induced deflections in the ferroelectric BaTiO3 membranes are two orders of magnitude larger than in the paraelectric SrTiO3 ones. Time-resolved X-ray micro-diffraction under illumination and temperature-dependent holographic interferometry provide combined evidence for the photostrictive strain in BaTiO3 originating from a partial screening of ferroelectric polarization by photo-excited carriers, which decreases the tetragonality of the unit cell. These findings showcase the potential of photostrictive freestanding ferroelectric films as wireless actuators operated by light.

3.
Small ; 19(30): e2207799, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37066721

ABSTRACT

The polar discontinuity at any ferroelectric surface creates a depolarizing field that must be screened for the polarization to be stable. In capacitors, screening is done by the electrodes, while in bare ferroelectric surfaces it is typically accomplished by atmospheric adsorbates. Although chemisorbed species can have even better screening efficiency than conventional electrodes, they are subject to unpredictable environmental fluctuations and, moreover, dominant charged species favor one polarity over the opposite. This paper proposes a new screening concept, namely surface functionalization with resonance-hybrid molecules, which combines the predictability and bipolarity of conventional electrodes with the screening efficiency of adsorbates. Thin films of barium titanate (BaTiO3 ) coated with resonant para-aminobenzoic acid (pABA) display increased coercivity for both signs of ferroelectric polarization irrespective of the molecular layer thickness, thanks to the ability of these molecules to swap between different electronic configurations and adapt their surface charge density to the screening needs of the ferroelectric underneath. Because electron delocalization is only in the vertical direction, unlike conventional metals, chemical electrodes allow writing localized domains of different polarity underneath the same electrode. In addition, hybrid capacitors composed of graphene/pABA/ferroelectric have been made with enhanced coercivity compared to pure graphene-electode capacitors.

4.
Materials (Basel) ; 16(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36837043

ABSTRACT

Layered Bi-misfit cobaltates, such as Bi2Sr2Co2Oy, are the natural superlattice of an electrically insulating rocksalt (RS) type Bi2Sr2O4 layer and electrically conducting CoO2 layer, stacked along the crystallographic c-axis. RS and CoO2 layers are related through charge compensation reactions (or charge transfer). Therefore, thermoelectric transport properties are affected when doping or substitution is carried out in the RS layer. In this work, we have shown improved thermoelectric properties of spark plasma sintered Bi2Sr2-xCaxCo2Oy alloys (x = 0, 0.3 and 0.5). The substitution of Ca atoms affects the thermal properties by introducing point-defect phonon scattering, while the electronic conductivity and thermopower remain unaltered.

5.
Adv Mater ; 33(9): e2004374, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501746

ABSTRACT

The observation of electronic phase separation textures in vanadium dioxide, a prototypical electron-correlated oxide, has recently added new perspectives on the long standing debate about its metal-insulator transition and its applications. Yet, the lack of atomically resolved information on phases accompanying such complex patterns still hinders a comprehensive understanding of the transition and its implementation in practical devices. In this work, atomic resolution imaging and spectroscopy unveils the existence of ferroelastic tweed structures on ≈5 nm length scales, well below the resolution limit of currently used spectroscopic imaging techniques. Moreover, density functional theory calculations show that this pretransitional fine-scale tweed, which on average looks and behaves like the standard metallic rutile phase, is in fact weaved by semi-dimerized chains of vanadium in a new monoclinic phase that represents a structural bridge to the monoclinic insulating ground state. These observations provide a multiscale perspective for the interpretation of existing data, whereby phase coexistence and structural intermixing can occur all the way down to the atomic scale.

6.
J Phys Condens Matter ; 29(28): 284001, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28593933

ABSTRACT

The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO3 films sandwiched between the most habitual perovskite electrodes, SrRuO3, on top of the most used perovskite substrate, SrTiO3. We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO3 capacitors. We show that even the high screening efficiency of SrRuO3 electrodes is still insufficient to stabilize polarization in SrRuO3/BaTiO3/SrRuO3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

7.
ACS Appl Mater Interfaces ; 8(26): 16823-32, 2016 Jul 06.
Article in English | MEDLINE | ID: mdl-27280493

ABSTRACT

Lattice-mismatched epitaxial films of La0.7Sr0.3MnO3 (LSMO) on LaAlO3 (001) substrates develop a crossed pattern of misfit dislocations above a critical thickness of 2.5 nm. Upon film thickness increases, the dislocation density progressively increases, and the dislocation spacing distribution becomes narrower. At a film thickness of 7.0 nm, the misfit dislocation density is close to the saturation for full relaxation. The misfit dislocation arrangement produces a 2D lateral periodic structure modulation (Λ ≈ 16 nm) alternating two differentiated phases: one phase fully coherent with the substrate and a fully relaxed phase. This modulation is confined to the interface region between film and substrate. This phase separation is clearly identified by X-ray diffraction and further proven in the macroscopic resistivity measurements as a combination of two transition temperatures (with low and high Tc). Films thicker than 7.0 nm show progressive relaxation, and their macroscopic resistivity becomes similar than that of the bulk material. Therefore, this study identifies the growth conditions and thickness ranges that facilitate the formation of laterally modulated nanocomposites with functional properties notably different from those of fully coherent or fully relaxed material.

8.
ACS Appl Mater Interfaces ; 5(20): 10118-26, 2013 Oct 23.
Article in English | MEDLINE | ID: mdl-24028676

ABSTRACT

Ferromagnetic single crystalline [100], [110], and [111]-oriented expanded austenite is obtained by plasma nitriding of paramagnetic 316L austenitic stainless steel single crystals at either 300 or 400 °C. After nitriding at 400 °C, the [100] direction appears to constitute the magnetic easy axis due to the interplay between a large lattice expansion and the expected decomposition of the expanded austenite, which results in Fe- and Ni-enriched areas. However, a complex combination of uniaxial (i.e., twofold) and biaxial (i.e., fourfold) in-plane magnetic anisotropies is encountered. It is suggested that the former is related to residual stress-induced effects while the latter is associated to the in-plane projections of the cubic lattice symmetry. Increasing the processing temperature strengthens the biaxial in-plane anisotropy in detriment of the uniaxial contribution, in agreement with a more homogeneous structure of expanded austenite with lower residual stresses. In contrast to polycrystalline expanded austenite, single crystalline expanded austenite exhibits its magnetic easy axes along basic directions.

9.
Phys Rev Lett ; 110(10): 107206, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23521293

ABSTRACT

Strain engineering of functional properties in epitaxial thin films of strongly correlated oxides exhibiting octahedral-framework structures is hindered by the lack of adequate misfit relaxation models. Here we present unreported experimental evidence of a four-stage hierarchical development of octahedral-framework perturbations resulting from a progressive imbalance between electronic, elastic, and octahedral tilting energies in La(0.7)Sr(0.3)MnO(3) epitaxial thin films grown on SrTiO(3) substrates. Electronic softening of the Mn-O bonds near the substrate leads to the formation of an interfacial layer clamped to the substrate with strongly degraded magnetotransport properties, i.e., the so-called dead layer, while rigid octahedral tilts become relevant at advanced growth stages without significant effects on charge transport and magnetic ordering.

10.
J Nanosci Nanotechnol ; 10(2): 1327-37, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20352795

ABSTRACT

The present study is devoted to analyze the compatibility of yttria-stabilized zirconia thin films prepared by pulsed laser deposition and metalorganic chemical vapor deposition techniques, with microfabrication processes based on silicon technologies for micro solid oxide fuel cells applications. Deposition of yttria-stabilized zirconia on Si/SiO2/Si3N4 substrates was optimized for both techniques in order to obtain high density and homogeneity, as well as a good crystallinity for film thicknesses ranging from 60 to 240 nm. In addition, stabilized zirconia free-standing membranes were fabricated from the deposited films with surface areas between 50 x 50 microm2 and 820 x 820 microm2. Particular emphasis was made on the analysis of the effect of the nature of the deposition technique and the different design and fabrication parameters (membrane area, thickness and substrate deposition temperature) on the residual stress of the membranes in order to control their thermomechanical stability for application as electrolyte in micro solid oxide fuel cells.

11.
Small ; 5(2): 265-71, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19089840

ABSTRACT

Structural strain due to lattice mismatch is used to promote the formation of a self-assembled network of antidots in highly epitaxial La(2/3)Sr(1/3)MnO(3) thin films grown on (001) oriented SrTiO(3) substrates by radiofrequency magnetron sputtering. Size, depth, and separation between antidots can be controlled by changing deposition parameters and the miscut angle of the substrate. This morphology exhibits a remarkable magnetic anisotropy and offers unique opportunities for versatile nanostencils for the preparation of nano-object networks that can be of major relevance for the fabrication of oxide-based magnetic and magnetoelectronic devices.


Subject(s)
Nanotechnology/methods , Oxides/chemistry , Anisotropy , Crystallization , Electrochemistry/methods , Magnetics , Materials Testing , Models, Statistical , Nanostructures/chemistry , Stress, Mechanical , Surface Properties , Temperature
12.
J Mater Sci Mater Med ; 18(8): 1643-7, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17483884

ABSTRACT

Papain thin films were synthesised by matrix assisted and conventional pulsed laser deposition (PLD) techniques. The targets submitted to laser radiation consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. For the deposition of the thin films by conventional PLD pressed biomaterial powder targets were submitted to laser irradiation. An UV KrF* excimer laser source was used in the experiments at 0.5 J/cm(2) incident fluence value, diminished one order of magnitude as compared to irradiation of inorganic materials. The surface morphology of the obtained thin films was studied by atomic force profilometry and atomic force microscopy. The investigations showed that the growth mode and surface quality of the deposited biomaterial thin films is strongly influenced by the target preparation procedure.


Subject(s)
Biocompatible Materials/chemistry , Crystallization/methods , Lasers , Membranes, Artificial , Papain/chemistry , Papain/ultrastructure , Hot Temperature , Materials Testing , Surface Properties
13.
Article in English | MEDLINE | ID: mdl-18276567

ABSTRACT

A systematic study of domain structure and residual stress evolution with film thickness and of phase transition in c/a epitaxial PbTiO(3)/LaAlO(3) films using X-ray diffraction and Raman spectroscopy is reported. Both techniques revealed that the films are under tensile residual stress in the film plane and that a-domains are more stressed than c-domains. The two components of the large A(1)(TO) Ramanmodes are associated with a- and c-domains and their intensity ratio correlates to the volume fraction of a-domains. The evolution of the Raman signature with temperature revealed that the spectrum of a-domains disappears around 480 degrees C, whereas c-domains present an anomaly in their spectrum at 500 degrees C but maintain a well-defined Raman signature up to 600 degrees C.


Subject(s)
Lead/chemistry , Membranes, Artificial , Models, Chemical , Models, Molecular , Spectrum Analysis, Raman , Titanium/chemistry , X-Ray Diffraction , Computer Simulation , Elasticity , Materials Testing , Molecular Conformation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...