Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pept Res ; 61(4): 177-88, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12605603

ABSTRACT

In a previous study we designed a 20-residue peptide able to adopt a significant population of a three-stranded antiparallel beta-sheet in aqueous solution (de Alba et al. [1999]Protein Sci.8, 854-865). In order to better understand the factors contributing to beta-sheet folding and stability we designed and prepared nine variants of the parent peptide by substituting residues at selected positions in its strands. The ability of these peptides to form the target motif was assessed on the basis of NMR parameters, in particular NOE data and 13Calpha conformational shifts. The populations of the target beta-sheet motif were lower in the variants than in the parent peptide. Comparative analysis of the conformational behavior of the peptides showed that, as expected, strand residues with low intrinsic beta-sheet propensities greatly disfavor beta-sheet folding and that, as already found in other beta-sheet models, specific cross-strand side chain-side chain interactions contribute to beta-sheet stability. More interestingly, the performed analysis indicated that the destabilization effect of the unfavorable strand residues depends on their location at inner or edge strands, being larger at the latter. Moreover, in all the cases examined, favorable cross-strand side chain-side chain interactions were not strong enough to counterbalance the disfavoring effect of a poor beta-sheet-forming residue, such as Gly.


Subject(s)
Peptides/chemistry , Amino Acid Sequence , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Peptides/metabolism , Protein Folding , Protein Structure, Secondary , Thermodynamics
2.
Bioorg Med Chem ; 9(12): 3173-83, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11711293

ABSTRACT

To probe the importance of a proposed beta-turn within residues S9-R12 of PACAP for recognition by VIP/PACAP receptors, compounds 1 and 2, two conformationally restricted analogues of PACAP27 incorporating respectively (S)- or (R)-IBTM as type II or II' beta-turn dipeptide mimetic at the Y10-S11 position, were synthesized. According to 1H NMR conformational analyses in aqueous solution and 30% TFE, both PACAP27 and the [S-IBTM(10,11)]PACAP27 analogue 1 adopt similar ordered structures. PACAP27 shows an N-terminal disordered region (residues H1-F6) and an alpha-helical conformation within segment T7-L27. For residues S9-R12, our data seem more compatible with a segment of the alpha-helix than with the beta-turn previously proposed for this fragment. In compound 1 the alpha-helix, also spanning T7-L27 residues, appears slightly distorted at the N-terminus relative to the native peptide. Although this distortion could lead to the marked decrease in binding affinity of this compound at the VIP/PACAP receptors, the lack of the Y10 side chain in analogues 1 and 2 could also significantly affect the binding of these compounds.


Subject(s)
Neuropeptides/chemistry , Neuropeptides/metabolism , Receptors, Vasoactive Intestinal Peptide/metabolism , Amino Acid Sequence , Animals , Indoles/chemistry , Magnetic Resonance Spectroscopy , Male , Molecular Mimicry , Molecular Sequence Data , Pituitary Adenylate Cyclase-Activating Polypeptide , Protein Conformation , Rats , Rats, Wistar , Receptors, Vasoactive Intestinal Polypeptide, Type I , Structure-Activity Relationship
3.
J Biomol NMR ; 19(4): 331-45, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11370779

ABSTRACT

Unravelling the factors that contribute to the formation and the stability of beta-sheet structure in peptides is a subject of great current interest. A beta-hairpin, the smallest beta-sheet motif, consists of two antiparallel hydrogen-bonded beta-strands linked by a loop region. We have performed a statistical analysis on protein beta-hairpins showing that the most abundant types of beta-hairpins, 2:2, 3:5 and 4:4, have characteristic patterns of 13C(alpha) and 13C(beta) conformational shifts, as expected on the basis of their phi and psi angles. This fact strongly supports the potential value of 13C(alpha) and 13C(beta) conformational shifts as a means to identify beta-hairpin motifs in peptides. Their usefulness was confirmed by analysing the patterns of 13C(alpha) and 13C(beta) conformational shifts in 13 short peptides, 10-15 residues long, that adopt beta-hairpin structures in aqueous solution. Furthermore, we have investigated their potential as a method to quantify beta-hairpin populations in peptides.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Peptides/chemistry , Protein Structure, Secondary , Carbon Isotopes , Models, Chemical , Protein Conformation
4.
Protein Sci ; 9(11): 2151-60, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11152125

ABSTRACT

Previous conformational analysis of 10-residue linear peptides enabled us to identify some cross-strand side-chain interactions that stabilize beta-hairpin conformations. The stabilizing influence of these interactions appeared to be greatly reduced when the interaction was located at the N- and C-termini of these 10-residue peptides. To investigate the effect of the position relative to the turn of favorable interactions on beta-hairpin formation, we have designed two 15-residue beta-hairpin forming peptides with the same residue composition and differing only in the location of two residues within the strand region. The conformational properties of these two peptides in aqueous solution were studied by 1H and 13C NMR. Differences in the conformational behavior of the two designed 15-residue peptides suggest that the influence of stabilizing factors for beta-hairpin formation, in particular, cross-strand side-chain interactions, depends on their proximity to the turn. Residues adjacent to the turn are most efficient in that concern. This result agrees with the proposal that the turn region acts as the driving force in beta-hairpin folding.


Subject(s)
Protein Conformation , Amino Acid Sequence , Magnetic Resonance Spectroscopy , Models, Chemical , Molecular Sequence Data , Peptide Biosynthesis , Protein Structure, Secondary , Sequence Homology, Amino Acid , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...